Linux进程学习【进程地址】

举报
北 海 发表于 2023/05/20 21:04:51 2023/05/20
【摘要】 对于 C/C++ 来说,程序中的内存包括这几部分:栈区、堆区、静态区 等,其中各个部分功能都不相同,比如函数的栈帧位于 栈区,动态申请的空间位于 堆区,全局变量和常量位于 静态区 ,区域划分的意义是为了更好的使用和管理空间,那么 真实物理空间 也是如此划分吗?多进程运行 时,又是如何区分空间的呢?写时拷贝 机制原理是什么?本文将对这些问题进行解答

✨个人主页: Yohifo
🎉所属专栏: Linux学习之旅
🎊每篇一句: 图片来源
🎃操作环境: CentOS 7.6

  • Perseverance is not a long race; it is many short races one after another.
    • 毅力不是一场漫长的比赛;是许多短跑一个接一个。

image.png

📘前言

对于 C/C++ 来说,程序中的内存包括这几部分:栈区堆区静态区 等,其中各个部分功能都不相同,比如函数的栈帧位于 栈区,动态申请的空间位于 堆区,全局变量和常量位于 静态区 ,区域划分的意义是为了更好的使用和管理空间,那么 真实物理空间 也是如此划分吗?多进程运行 时,又是如何区分空间的呢?写时拷贝 机制原理是什么?本文将对这些问题进行解答

内存条:真实的物理空间,用来存储各种数据

image.png


📘正文

📖问题引入

==地址是唯一的,对地址进程编号的目的是为了不冲突==

这是个耳熟能详的概念,在 C语言 学习阶段,我们可以通过对变量 & 取地址的方式,查看当前变量存储空间的首地址信息

#include <stdio.h>

int main()
{
  const char* ps = "这是一个常量字符串";
  printf("字符串地址:%p\n", ps);  //%p 专门用来打印地址信息
  return 0;
}

image.png

利用前面学习的 fork 函数创建子进程,使得子进程和父进程共同使用一个变量

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <stdlib.h>

int main()
{
  int val = 10;
  pid_t id = fork();
  if(id == 0)
  {
  	val *= 2;	//刻意改变共享值
    printf("我是子进程,pid:%d ppid:%d 共享值:%d 共享值地址:%p\n", getpid(), getppid(), val, &val);
    exit(0);
  }

  waitpid(id, 0, 0);

  printf("我是父进程,pid:%d ppid:%d 共享值:%d 共享值地址:%p\n", getpid(), getppid(), val, &val);
  return 0;
}

image.png

对于同一块空间,读取到了不同的值,==是不可能出现这种情况的==

因为真实地址都是 唯一 的,分析:

  • 不同的空间出现同名的情况
  • 父子进程使用的真实物理空间并非同一块空间!

原因:

  • 当子进程尝试修改共享值时,发生 写时拷贝 机制
  • 语言层面的程序空间地址不是真实物理地址
  • 一般将此地址称为 虚拟地址线性地址

结论: ==语言层面的地址都是虚拟地址,用户无法看到真实的物理地址,由 OS 统一管理==


📖虚拟空间划分

一般用户的认知中,C/C++ 程序内存分布如下图所示,直接表示内存中的各个部分
image.png


📖真实空间分布

但实际上的空间分布是这样的:
image.png

如果有多个进程(真实地址空间只有一份),此时情况是这样的:
image.png

🖋️代码实现

在实现虚拟地址空间时,是用结构体 mm_struct 实现的

task_struct 一样,mm_struct 中也包含了很多成员,比如不同区域的边界值

//简单展示其中的成员信息
mm_struct
{
	//代码区域划分
	unsigned long code_start;
	unsigned long code_end;

	//堆区域划分
	unsigned long heap_start;
	unsigned long heap_end;

	//栈区域划分
	unsigned long stack_start;
	unsigned long stack_end;

	//还有很多其他信息
	……
}

每个进程都会有这样一个 mm_struct,其中的区域划分就是虚拟地址空间

==通过对边界值的调整,可以做到不同区域的增长,如堆区、栈区扩大==

mm_struct 中的信息配合 页表+MMU 在对应的真实空间中使内存(程序寻址)

🖋️问题反思

此时可以理解为什么会发生同一块空间能读取到不同值的现象了

  • 父子进程有着各自的 mm_struct,其成员起始值一致
  • 对于同一个变量,如果未改写,则两者的虚拟地址通过 页表 + MMU 转换后指向同一块空间
  • 发生改写行为,此时会在真实空间中再开辟一块空间,拷贝变量值,让其中一个进程的虚拟地址空间映射改变,这种行为称为 写时拷贝

刚开始,父子进程共同使用同一块空间
image.png

当子进程修改共享值后
image.png


📖进程地址空间

下面来好好谈谈 进程地址空间 (虚拟地址)

🖋️虚拟地址

在早期程序中,是没有虚拟地址空间的,对于数据的写入和读取,是直接在物理地址上进行的,程序与物理空间直接打交道,存在以下问题:

  • 假设存在野指针问题,此时可能直接对物理内存造成越界读写
  • 程序运行时,每次都需要大小为 4GB 的内存使用,当进程过多时,资源分配就会很紧张,引起进程阻塞,导致执行效率下降
  • 动态申请内存后,需要依次释放,影响整体效率

image.png

为了解决各种问题,大佬们提出了 虚拟地址空间 这个概念,有了 虚拟空间 后,当进程创建时,系统会为其分配属于自己的 虚拟空间需要使用内存时,通过 寻址 的方式,使用物理地址上的空间即可

  • 多个进程互不影响,动态使用,做到 效率资源 双赢
  • 发生越界行为时,寻址 机制会检测出是否发生越界行为,如果发生了,能在其对物理地址造成影响前进行拦截
  • 因为每个进程都有属于自己的空间,OS 在管理进程时,能够以统一的视角进行管理,效率很高

光有 虚拟地址空间 是不够的,还需要一套完整的 ‘‘翻译’’ 机制进行程序寻址,如 Linux 中的 页表 + MMU

🖋️页表+MMU

页表 本质上就是一张表,操作系统 会为每个 进程 分配一个 页表,该 页表 使用 物理地址 存储。当 进程 使用类似 malloc 等需要 映射代码或数据 的操作时,操作系统 会在随后马上 修改页表 以加入新的 物理内存。当 进程 完成退出时,内核会将相关的页表项删除掉,以便分配给新的 进程
原话出处:ARM体系架构——MMU

系统底层机制的研究是非常生涩的,这里简言之就是 页表 记录信息,通过 MMU 机制进行寻址使用内存,假设目标空间为只读区域(比如数据段、代码段),在进行空间开辟时,会打上只读权限标签。后续对这块进行写入操作时,会直接拒绝

对于这种机制感兴趣的同学可以点击下面这几篇文章查看详细内容:
Linux的虚拟内存详解(MMU、页表结构)
ARM体系架构——MMU
逻辑地址、页表、MMU等

🖋️写时拷贝

Linux 中存在一个很有意思的机制:写时拷贝
这是一种 赌bo 行为,OS 此时就赌你不会对数据进行修改,这样就可以 使多个 进程 在访问同一个数据时,指向同一块空间,当发生改写行为时,再新开辟空间进行读写

这种行为对于内置类型来说感知还不是很强,但如果是自定义类型的话,写时拷贝 行为可以在某些场景下减少 拷贝构造 函数的调用次数(尤其是 深拷贝),尽可能提高效率

可以通过一个简单的例子来证明此现象

//计算 string 类的大小
#include <iostream>
#include <string>
using namespace std;


int main()
{
	string s;
	cout << sizeof(s) << endl;
	return 0;
}

image.png

原因:

  • g++ 中的 string 对象创建后,它就赌你不会直接改写,所以实际对象为一个指针类型(64位环境下为8字节),当发生改写行为时,触发 写时拷贝 机制,再进行其他操作

🖋️内存申请

值得注意的是,在进行动态内存申请时,OS 也并非直接去申请好内存,而是先判断是否有足够的内存,如果有,就在 页表 中记录相应信息(这种行为叫做 缺页中断),当程序实际使用到这块空间时,OS 才会去申请内存给程序使用

==OS是一个讲究人,不允许任何空间浪费或低效率行为==

假设没有 缺页中断 机制,给程序分配空间后,程序又不用,此时空间属于闲置状态,这是不被 OS 认可的低效浪费行为

image.png

图片来源:3.2.2 OS之请求分页管理方式(请求页表、缺页中断机构、地址变换机构)


📖虚拟地址空间存在的意义

总结一下,虚拟内存+页表+MMU 这种管理方式的好处:

  • 防止地址随意访问,保护物理内存与其他进程(权限设置)
  • 进程管理内存管理 进行 解耦,方便 OS 进行更高效的管理
  • 可以让进程以统一的视角看待自己的代码和数据

📘总结

以上就是本篇关于 Linux进程学习【进程地址】的全部内容了,我们从一个有趣的小问题切入,见识到了 虚拟地址空间物理地址空间 的奇妙关系,在种种机制的加持之下,OS 对进程的管理变得更加得心应手,系统也因此得以高效运行

如果你觉得本文写的还不错的话,期待留下一个小小的赞👍,你的支持是我分享的最大动力!

如果本文有不足或错误的地方,随时欢迎指出,我会在第一时间改正


image.png

相关文章推荐

Linux进程学习【环境变量】

Linux进程学习【进程状态】

Linux进程学习【基本认知】

===============

Linux工具学习之【gdb】

Linux工具学习之【git】

Linux工具学习之【gcc/g++】

Linux工具学习之【vim】

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。