高度可扩展的时间自适应反射率融合模型(HISTARFM)数据库

举报
此星光明 发表于 2023/05/10 18:49:05 2023/05/10
【摘要】 ​高度可扩展的时间自适应反射率融合模型(HISTARFM)数据库HISTARFM数据库是一个高空间分辨率的月度反射率时间序列,并对云层数据缺口进行修正。该数据集是通过融合陆地卫星和中分辨率成像光谱仪(MODIS)的时间序列,以30米的分辨率创建的。该方法包括使用两个估计器,它们共同作用于消除随机噪声,并使Landsat光谱反射率的偏差最小化。第一个估计器是一个最佳内插器,它使用Landsat...

高度可扩展的时间自适应反射率融合模型(HISTARFM)数据库
HISTARFM数据库是一个高空间分辨率的月度反射率时间序列,并对云层数据缺口进行修正。该数据集是通过融合陆地卫星和中分辨率成像光谱仪(MODIS)的时间序列,以30米的分辨率创建的。该方法包括使用两个估计器,它们共同作用于消除随机噪声,并使Landsat光谱反射率的偏差最小化。第一个估计器是一个最佳内插器,它使用Landsat历史数据和来自最近的过道的融合MODIS和Landsat反射率生成Landsat反射率估计。融合过程采用了一个像素级的线性回归模型。第二个估计器是一个卡尔曼滤波器,用于纠正第一个估计器产生的反射率中的任何偏差。前言 – 床长人工智能教程HISTARFM提供了改进的反射率值和一个独特而有用的副产品--反射率不确定性,这对现实的误差计算有帮助(例如,计算植被指数或生物物理变量的误差条)。关于HISTARFM算法的更详细解释,请参考Moreno-Martinez等人的2020年手稿。

https://www.sciencedirect.com/science/article/pii/S0034425720302716

Citation

Moreno-Martínez, Álvaro, Emma Izquierdo-Verdiguier, Marco P. Maneta, Gustau Camps-Valls, Nathaniel Robinson, Jordi Muñoz-Marí, Fernando Sedano,
Nicholas Clinton, and Steven W. Running. "Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud." Remote Sensing of
Environment 247 (2020): 111901.

Earth Engine Snippet

不同的版本和研究领域已经是流程:

美国CONUS数据库包含154张作为资产储存的图像。它与第二版相对应,时间覆盖范围从2009年1月到2021年10月。ImageCollection中的每张图片都覆盖了整个美国本土,每张图片都有 "版本"、"月份 "和 "年份 "属性。这些信息也存在于它们的文件名中。例如,名为Gap_Filled_Landsat_CONUS_month_10_2009_v2的图像是2009年10月CONUS地区的图像。CONUS数据库在这个资产中可用,图像在地球引擎中的加载情况如下:

var histarfm_conus = ee.ImageCollection("projects/KalmanGFwork/GFLandsat_V1")

 欧洲、东亚主要地区和索马里的数据库目前正在用第5版的算法生成。版本5包含26916张图片。欧洲包含从2013年到2021年的9年,东亚包含从2019年到2021年的3年,索马里包含从2010年到2014年的5年。所有的研究区域都被划分为瓦片,作为云端优化的Geotiffs储存在谷歌云平台上。图像的名称包括月份、年份、具体研究区域和瓦片。举例来说,名为GF_2018_10_EUROPA_1的图像代表了2018年10月在欧洲的第一个瓦片上的图像。数据库的第5版可在此获得,图像可通过以下代码在地球引擎中加载:

var histarfm_ic = ee.ImageCollection("projects/ee-kalman-gap-filled/assets/histarfm_v5")

Sample code : https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:analysis-ready-data/HISTARFM-V5-EXAMPLE 

关于如何与HISTARFM合作的更多信息,以及如何利用HISTARFM数据库改善你的研究和应用的一些例子,请访问这里的教程。

以下论文中使用了HISTARFM数据库

  • Martínez-Ferrer, L., et al. "Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning." Remote Sensing of Environment 280 (2022): 113199.

  • Salerno, L., et al. "Satellite Analyses Unravel the Multi-Decadal Impact of Dam Management on Tropical Floodplain Vegetation." Frontiers in Environmental Science (2022): 357.

  • Kushal, K. C., and Sami Khanal. "Agricultural productivity and water quality tradeoffs of winter cover crops at a landscape scale through the lens of remote sensing." Journal of Environmental Management 330 (2023): 117212.

License

The dataset is licensed under a Creative Commons Attribution NonCommercial 4.0 International license.

Curated by: Álvaro Moreno-Martínez, Emma Izquierdo-Verdiguier, Jordi Muñoz-Marí and Nicolas Clinton.

Keywords: MODIS, Landsat, Land reflectance images, gap-filled temporal series, vegetation

Last updated: 06-03-2023

 

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。