.0版包括美国大陆牧场植物功能群的网格化分数估算

举报
此星光明 发表于 2023/04/29 18:17:15 2023/04/29
【摘要】 ​牧场分析平台牧场分析平台的数据产品以GEE资产的形式提供,并通过网络应用rangelands.app向公众提供分析。植被覆盖率:植被覆盖率:牧场分析平台(RAP)植被覆盖,3.0版包括美国大陆牧场植物功能群的网格化分数估算。1984年至今,每年的估计值都是以30米的空间分辨率产生的。六个植物功能组别是一年生草本和草类、多年生草本和草类、灌木、树木、垃圾和裸地。覆盖物的数值是以像素为单位的百...

牧场分析平台
牧场分析平台的数据产品以GEE资产的形式提供,并通过网络应用rangelands.app向公众提供分析。

植被覆盖率:植被覆盖率:牧场分析平台(RAP)植被覆盖,3.0版包括美国大陆牧场植物功能群的网格化分数估算。1984年至今,每年的估计值都是以30米的空间分辨率产生的。六个植物功能组别是一年生草本和草类、多年生草本和草类、灌木、树木、垃圾和裸地。覆盖物的数值是以像素为单位的百分比报告。这些估计值是通过一个时间卷积网络产生的,使用的是自然资源保护局自然资源目录(NRI)项目、土地管理局评估、库存和监测(AIM)项目以及国家公园管理局北科罗拉多高原网络(NCPN)收集的植物功能组的实地测量数据,以及来自Landsat TM、ETM+和OLI Collection 2的空间连续地球观测。前言 – 床长人工智能教程

牧场生产::牧场分析平台(RAP)牧场生产,3.0版包括对地上草本生物量的网格化估计,分为一年生草本和草类以及多年生草本和草类的植被类型。这些估计值是在1986年至今的30米空间分辨率上产生的。估计数按年度和16天的间隔提供。数值以净初级生产力的形式报告,可使用下面谷歌地球引擎脚本中的功能转换为每英亩新长出的地上生物量的磅数--估计值不反映前几年的固定生物量。估计值是用光照效率模型计算的(以碳为单位估计净初级生产力),然后分配给地上和地下的池子(基于年平均温度),并使用碳干物质比率进一步转换为生物量。

数据集根据下面的变化日志中提供的规格进行了更新。这里提供了更新的验证统计数据:https://rangelands.app/products/rapV3/

RAP_v3

Earth Engine Asset Snippets

// Vegetation Cover
var RAP_veg = ee.ImageCollection("projects/rap-data-365417/assets/vegetation-cover-v3")

// Net Primary Production (annual)
var RAP_npp = ee.ImageCollection("projects/rap-data-365417/assets/npp-partitioned-v3")

var cover = ee.ImageCollection("projects/rangeland-analysis-platform/vegetation-cover-v3"),
    geometry = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[-116.86443824768067, 44.05062158819191],
          [-116.86443824768067, 40.608258948072795],
          [-113.26092262268067, 40.608258948072795],
          [-113.26092262268067, 44.05062158819191]]], null, false);
// Author: Eric Jensen and Matt Jones, Working Lands for Wildlife, University of Montana
// Contact: eric.jensen@mso.umt.edu
// Date: January 1, 2022
// Purpose of script: This script exports RAP Vegetation Cover raster data (TIF file format) from Google Earth Engine to your personal Google Drive
// Supporting article: https://support.rangelands.app/article/62-export-vegetation-cover-rasters


// ------------------------------------------------------------
// -------------- Variables for User to change ----------------
// ------------------------------------------------------------

// ---------- Define the bounding box ------------------------------
//  If bounding box was drawn on map below, no additional steps are needed.
//
//  If a shapefile was loaded - rename shapefile to 'geometry'.  To do this 
//  click the default shapefile name (likely 'table') in the Imports panel above,
//  and rename it 'geometry'

// ---------- Define the years that you want to export --------------
// ---------- End year is inclusive in this case  ------------------
var yearStart = 2010
var yearEnd = 2019

// -------------- Define the plant functional types (PFTs) that you want to export --------------
// PFTs are "AFGC" (Annual forb and grass cover), "BG" (bare ground), "LTR" (litter), 
// "PFGC" (perennial forb and grass cover), "SHR" (shrub cover), and "TREE" (tree cover)
var PFTs = ee.List(['AFG', 'BGR', 'LTR', 'PFG', 'SHR', 'TRE'])


// ----------------------------------------------------------------------
// -------------- Do not edit anything below this header ----------------
// ----------------------------------------------------------------------

// ------------- Select the PFTs for export as defined by User  --------------
var cover_toExport = cover.select(PFTs)

// ------------- Export images one-by-one for each year -------------

// Loop over year objects to export images year-by-year
for (var yr = yearStart; yr <= yearEnd; yr++){
  // Export the image, specifying scale and region.
  Export.image.toDrive({
    image: cover_toExport.filterDate(yr.toString(), (yr+1).toString()).first(),
    description: 'RAP_VegCover_' + yr,
    folder: 'RAP_exports',
    scale: 30,
    region: geometry.bounds(),
    maxPixels: 1e10
  });
}

Code Snippets: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:agriculture-vegetation-forestry/RANGELAND-ANALYSIS-PLATFORM-EXAMPLE

Citation

Jones, M.O., N.P. Robinson, D.E. Naugle, J.D. Maestas, M.C. Reeves, R.W.
Lankston, and B.W. Allred. 2020. Annual and 16-day rangeland production
estimates for the western United States. bioRxiv 2020.11.06.343038.
http://dx.doi.org/10.1101/2020.11.06.343038

Robinson, N. P., M. O. Jones, A. Moreno, T. A. Erickson, D. E. Naugle, and B. W.
Allred. 2019. Rangeland productivity partitioned to sub-pixel plant functional
types. Remote Sensing 11:1427. http://dx.doi.org/10.3390/rs11121427

Allred, B. W., B. T. Bestelmeyer, C. S. Boyd, C. Brown, K. W. Davies, L. M.
Ellsworth, T. A. Erickson, S. D. Fuhlendorf, T. V. Griffiths, V. Jansen, M. O.
Jones, J. Karl, J. D. Maestas, J. J. Maynard, S. E. McCord, D. E. Naugle, H. D.
Starns, D. Twidwell, and D. R. Uden. 2020. Improving Landsat predictions of
rangeland fractional cover with multitask learning and uncertainty.
bioRxiv:2020.06.10.142489. http://dx.doi.org/10.1101/2020.06.10.142489

Sample scripts are available on the RAP Support Site.

Extra Info: See any of the three herbaceous biomass scripts for the function to convert from net primary production to biomass.

Download Tool/Code snippets if any: Analysis can be performed on these datasets for your regions of interest through the GUI at rangelands.app

License Information

Public Domain-CC0

Curated by

Sarah McCord, Point of Contact, and Jeb Williamson, Agricultural Research Service, U.S. Department of Agriculture

Keywords: rangelands, vegetation, time-series, machine learning, landsat

Last updated: 2022-01-06

Changelog

RAP v3 was released on 2022-01-01

Primary changes include:

  • Use of Landsat Collection 2
  • Addition of the National Park Service Northern Colorado Plateau Network (NCPN) monitoring data for cover training
  • Identify agriculture, development, and water
  • Addition of the eastern states

 

 

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。