【数据挖掘实战】——航空公司客户价值分析(K-Means聚类案例)
目录
项目地址:
一、背景和挖掘目标
1、RFM模型缺点分析
在模型中,消费金额表示在一段时间内,客业产品金额的总和。因航空票价受到运输距离、舱位等级等多种因素影响,同样消费金额的不同旅客对航空公司的价值是不同的。因此这个指标并不适合用于航空公司的客户价值分析。
传统模型分析是利用属性分箱方法进行分析如图,但是此方法细分的客户群太多,需要一一识别客户特征和行为,提高了针对性营销的成本。
2、原始数据情况
3、挖掘目标
- 借助航空公司客户数据,对客户进行分类;
- 对不同的客户类别进行特征分析,比较不同类客户的客户价值;
- 对不同价值的客户类别提供个性化服务,制定相应的营销策略。
二、分析方法与过程
1、初步分析:提出适用航空公司的LRFMC模型
- 因消费金额指标在航空公司中不适用,故选择客户在一定时间内累积的飞行里程M和客户乘坐舱位折扣系数的平均值C两个指标代替消费金额。此外,考虑航空公司会员加入时间在一定程度上能够影响客户价值,所以在模型中增加客户关系长度L,作为区分客户的另一指标,因此构建出LRFMC模型。
- 采用聚类的方法对客户进行细分,并分析每个客户群的特征,识别其客户价值。
2、总体流程
第一步:数据抽取
- 以2014-03-31为结束时间,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口内有乘机记录的所有客户的详细数据形成历史数据。对于后续新增的客户详细信息,利用其数据中最大的某个时间点作为结束时间,采用上述同样的方法进行抽取,形成增量数据。
- 根据末次飞行日期,从航空公司系统内抽取2012-04-01至2014-03-31内所有乘客的详细数据,总共62988条记录。
第二步:探索性分析
- 原始数据中存在票价为空值,票价为空值的数据可能是客户不存在乘机记录造成。
- 票价最小值为0、折扣率最小值为0、总飞行公里数大于0的数据。其可能是客户乘坐0折机票或者积分兑换造成。
describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值)。
第三步:数据预处理
- 数据清洗:从业务以及建模的相关需要方面考虑,筛选出需要的数据。
丢弃票价为空的数据。丢弃票价为0、平均折扣率不为0、总飞行公里数大于0的数据。
- 属性规约:原始数据中属性太多,根据LRFMC模型,选择与其相关的六个属性,删除不相关、弱相关或冗余的属性。
-
数据变换:属性构造、数据标准化。
属性构造:因原始数据中并没有直接给出LRFMC五个指标,需要构造这五个指标。
L = LOAD_TIME - FFP_DATE
会员入会时间距观测窗口结束的月数 = 观测窗口的结束时间 - 入会时间[单位:月
R = LAST_TO_END
客户最近一次乘坐公司飞机距观测窗口结束的月数 = 最后一次乘机时间至观察窗口末端时长[单位:月]
F = FLIGHT_COUNT
客户在观测窗口内乘坐公司飞机的次数 = 观测窗口的飞行次数[单位:次]
M = SEG_KM_SUM
客户在观测时间内在公司累计的飞行里程 = 观测窗口总飞行公里数[单位:公里]
C = AVG_DISCOUNT
客户在观测时间内乘坐舱位所对应的折扣系数的平均值 = 平均折扣率[单位:无]
数据标准化:因五个指标的取值范围数据差异较大,为了消除数量级数据带来的影响,需要对数据进行标准化处理。
第四步:构建模型
给df_data加上一列按照df_data索引,标签为值值的列。参考:
2、客户价值分析
根据业务定义五个等级的客户类别:重要保持客户、重要发展客户、重要挽留客户、一般客户、低价值客户。
客户群价值排名:根据每种客户类型的特征,对各类客户群行客户价值排名,获取高价值客户信息。
c)交叉销售。
总结和思考
- 在国内航空市场竞争日益激烈的背景下,客户流失问题是影响公司利益的重要因素之一。如何如何改善流失问题,继而提高客户满意度、忠诚度,维护自身的市场和利益?
- 客户流失分析可以针对目前老客户进行分类预测。针对航空公司客户信息数据附件(见:/示例程序/air_data.csv)可以进行老客户以及客户类型的定义(例如:将其中将飞行次数大于6次的客户定义为老客户,已流失客户定义为:第二年飞行次数与第一年飞行次数比例小于50%的客户等)。
- 选取客户信息中的关键属性如:会员卡级别,客户类型(流失、准流失、未流失),平均折扣率,积分兑换次数,非乘机积分总和,单位里程票价,单位里程积分等。通过这些信息构建客户的流失模型,运用模型预测未来客户的类别归属(未流失、准流失,或已流失)。
- 点赞
- 收藏
- 关注作者
评论(0)