全球植被冠层的阳光和阴影GPP(1992-2020年)
总初级生产力(GPP)是陆地碳预算的一个重要组成部分,在全球碳循环中发挥着突出的作用。准确估计陆地GPP对了解全球气候变化背景下陆地生物圈和大气层之间的相互作用至关重要,预测未来变化,并为气候政策决策提供信息。GPP与植被类型、气象因素、土壤湿度和其他因素密切相关。特别是,GPP受植被冠层结构的影响,如阳光下的叶子和阴影下的叶子。阳光下的叶片可以同时吸收直射和漫射辐射,当辐射较高时容易出现光饱和,而阴影下的叶片只能吸收漫射辐射,吸收的辐射强度一般在光补偿点和光饱和点之间。
在此,我们利用更新的双叶光利用效率模型(TL-LUE)制作了1992-2020年全球0.05°、8天的GPP、GPPshade和GPPsun数据集,该模型由GLOBMAP叶面积指数、CRUJRA气象学和ESA-CCI土地覆盖驱动。这样的产品可以支持探索阳光下和阴影下的叶片对GPP或SIF(太阳诱导叶绿素荧光)贡献的异同,以进一步挖掘不同碳循环过程的内部生态机制,推进碳循环建模。
你可以在这里下载数据集,Dryad | Data -- A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies (1992–2020)
在这里阅读论文前言 – 床长人工智能教程
免责声明:该数据集的全部或部分描述由作者或其作品提供。
数据集页面的使用说明
三个时间分辨率(8天、月、年)的单位分别为gC m-2 8天-1、gC m-2月-1和gC m-2 a-1。月度数据的比例系数为0.1,8天数据的比例系数为0.01。在该数据集中,为了保证真实性,我们没有删除或修改少量异常的高值(由LAI引起)。因此,在使用这个数据集时,你可以设置阈值来删除异常值。
引文:
Dataset citation¶
Earth Engine Snippet¶
var gpp_annual = ee.Image("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/gpp_yearly/GPP_v21_2020");
var shaded_annual = ee.Image("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/shaded_yearly/Shade_GPP_v21_2020");
var sunlit_annual = ee.Image("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/sunlit_yearly/Sun_GPP_v21_2020");
var gpp_monthly = ee.ImageCollection("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/gpp_monthly");
var shaded_monthly = ee.ImageCollection("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/shaded_monthly");
var sunlit_monthly = ee.ImageCollection("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/sunlit_monthly");
var gpp_8day = ee.ImageCollection("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/gpp_8day");
var shaded_8day = ee.ImageCollection("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/shaded_8day");
var sunlit_8day = ee.ImageCollection("projects/sat-io/open-datasets/GPP_SUNLIT_SHADED/sunlit_8day");
var palette = ['#ffffe5','#f7fcb9','#d9f0a3','#addd8e','#78c679','#41ab5d','#238443','#006837','#004529']
Map.addLayer(gpp_annual,{min:0,max:4500,palette:palette},'GPP annual',false)
Map.addLayer(shaded_annual,{min:0,max:2500,palette:palette},'GPP shaded annual',false)
Map.addLayer(sunlit_annual,{min:0,max:2500,palette:palette},'GPP sunlit annual',false)
//// Monthly datasets
var sunlit_monthly_2020 = sunlit_monthly.filterDate('2020-06-01','2020-12-31').first()
var shaded_monthly_2020 = shaded_monthly.filterDate('2020-06-01','2020-12-31').first()
var gpp_monthly_2020 = gpp_monthly.filterDate('2020-06-01','2020-12-31').first()
Map.addLayer(gpp_monthly_2020.multiply(0.1),{min:0,max:450,palette:palette},'GPP monthly June 2020',false)
Map.addLayer(shaded_monthly_2020.multiply(0.1),{min:0,max:250,palette:palette},'GPP shaded monthly June 2020',false)
Map.addLayer(sunlit_monthly_2020.multiply(0.1),{min:0,max:250,palette:palette},'GPP sunlit monthly June 2020',false)
//// 8 day datasets
var sunlit_8day_2020 = sunlit_8day.filterDate('2020-06-01','2020-12-31').first()
var shaded_8day_2020 = shaded_8day.filterDate('2020-06-01','2020-12-31').first()
var gpp_8day_2020 = gpp_8day.filterDate('2020-06-01','2020-12-31').first()
Map.addLayer(gpp_8day_2020.multiply(0.01),{min:0,max:65,palette:palette},'GPP 8day June 2020',false)
Map.addLayer(shaded_8day_2020.multiply(0.01),{min:0,max:65,palette:palette},'GPP shaded 8day June 2020',false)
Map.addLayer(sunlit_8day_2020.multiply(0.01),{min:0,max:120,palette:palette},'GPP sunlit 8day June 2020',false)
Sample Code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:agriculture-vegetation-forestry/GLOBAL-SUNLIT-SHADED-GPP-VEG-CANOPIES
License & Usage¶
This work is licensed under a CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license.
Curated in GEE by: Samapriya Roy
Keywords: carbon flux, global changes, long-time series, shaded GPP, sunlit GPP
Last updated: 2022-09-16
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
评论(0)