水文地理90米图层
Hydrography 90层利用MERIT Hydro数字高程模型在3角秒处(赤道90米∼)得出全球无缝、标准化的水文网络,即 "Hydrography90m",以及相应的河流地形和地貌信息。该网络的一个核心特征是最小的上游贡献区,即流量积累,为0.05平方公里(或5公顷),以启动一条河道,这使我们能够非常详细地提取上游河道。
前言 – 床长人工智能教程
数据验证程序证实,与HydroRIVERS、GRWL和MERIT Hydro-Vector相比,Hydrography90m对溪流网络的表述更为准确。准确度的提高主要是通过采用更高分辨率的DEM、MD8流量路由算法和明显较小的流量累积阈值来启动河道来实现的。凭借这些特点,Hydrography90m为支持各种淡水相关的研究学科提供了宝贵的基础。在这里可以找到论文中的其他细节。数据集可在此下载。
Hydrography90m layers
这是分辨率最高的全球水文地理数据集之一,具有多种用途。
免责声明:数据集的全部或部分描述是由作者或其作品提供的。
数据集预处理
水文数据集可以在这里下载。
Hydrography90m layers
文件夹是根据论文的描述重新命名的,包括在下面的表格中。参数名称保持一致,并根据需要提供额外的信息,以及上述参数的单位。
文献:
Amatulli, Giuseppe, Jaime Garcia Marquez, Tushar Sethi, Jens Kiesel, Afroditi Grigoropoulou, Maria M. Üblacker, Longzhu Q. Shen, and Sami Domisch."Hydrography90m: A new high-resolution global hydrographic dataset." Earth System Science Data 14, no. 10 (2022): 4525-4550.
数据结构:流域-网络-图层
Hydrography90m的基础层和网络层:流积、流向、排水流域、出口、河段、子流域、区域单位和洼地
Output map description |
Unit |
GEE Collection Name |
Flow accumulation (raster) |
km2 accumulation=acc |
flow_accumulation |
Flow direction (raster) |
NE–N–NW–W–SW–S–SE–E correspond to 1–2–3–4–5–6–7–8 |
flow__direction |
Drainage basin (raster) |
IDs from 1 to 1 676 628 |
drainage_basin |
Outlets (raster) |
ID=1 stream_vector=stream threshold=0.05; v.to.rast input=stream |
outlet |
Depression (raster) |
ID = 1 |
depression |
Stream segment (raster) |
IDs from 1 to 726 723 221 |
segment |
Sub-catchment (raster) |
IDs from basins=sub_catchment |
sub_catchment |
Regional unit (raster) |
IDs from 1 to 116 IDs from 150 to 200 |
regional_unit |
代码:
var flow_accumulation = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/flow_accumulation"),
flow_direction = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/flow_direction"),
depression = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/depression"),
drainage_basin = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/drainage_basin"),
outlet = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/outlet"),
regional_unit = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/regional_unit"),
segment = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/segment"),
sub_catchment = ee.ImageCollection("projects/sat-io/open-datasets/HYDROGRAPHY90/base-network-layers/sub_catchment"),
flowAccumulationVis = {"min":0,"max":237,"palette":["000000","023858","006837","1a9850","66bd63","a6d96a","d9ef8b","ffffbf","fee08b","fdae61","f46d43","d73027"]},
drainageDirectionVis = {"min":1,"max":8,"palette":["#d53e4f","#f46d43","#fdae61","#fee08b","#e6f598","#abdda4","#66c2a5","#3288bd"]};
var style = require('users/gena/packages:style')
Map.setCenter(-121.652, 38.022,11);
style.SetMapStyleGrey()
//flow accumulation
var flowAccumulation = flow_accumulation.mosaic().select('b1');
//flow direction
var drainageDirection = flow_direction.mosaic().select('b1');
Map.addLayer(drainageDirection, drainageDirectionVis, 'Drainage Direction',false);
Map.addLayer(flowAccumulation, flowAccumulationVis, 'Flow Accumulation',false);
Map.addLayer(sub_catchment.mosaic().randomVisualizer(),{},'Sub catchment',false)
Map.addLayer(segment.mosaic().randomVisualizer(),{},'Segment',false)
代码链接:https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:hydrology/HYDROGRAPHY90-BASE-NETWORK
GEE数据集:全球Hydrography90m对溪流网数据集
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
评论(0)