共享社会经济路径下的全球城市预测(2020-2100年)
这些数据集包括在共同社会经济路径(SSPs)下对未来城市土地的两个独立的全球预测,一个来自Chen等人(2020),另一个来自Gao & O'Neill(2020)。Chen等人的数据集提供了2020年至2100年(包括)每10年1公里分辨率的城市和非城市土地的二元分类(像素值为2代表城市;否则为1)。另一方面,Gao & O'Neill (2020)数据集提供了连续的数值,代表相同年份每个⅛度网格的完全城市化的概率。
在使用这些未来预测时,必须认识到它们是基于不同的方法、不同的训练数据和对未来情景的不同假设。例如,Gao和O'Neill的数据集考虑了375个次区域的广泛城市化模式,而Chen等人的数据则使用32个区域。虽然这两个数据集都是使用全球人类住区层(GHSL)进行训练,但Chen等人的数据是根据欧洲航天局的气候变化倡议(ESA CCI)2015年的数据进一步校准的。还有许多其他的区别,用户在使用这些数据之前,最好先了解一下各自论文中描述的假设和方法。
作为这些差异的一个例子,下面是这些数据集和Li等人(2021)的城市范围数据(也在社区目录中)在不同SSP情景下亚洲城市百分比的预测图。请注意,Li等人的数据不是基于GHSL,而是基于夜间灯光的历史城市范围数据集。
数据集注解¶
(Chen et al 2020)。该数据集提供了从2020年到2100年(包括)每10年对所有共享社会经济路径(SSP)的城市扩张的未来估计。这些数据的分辨率为1公里。像素的值为2(城市)或1(非城市)。每张图片对应一个日期,每个SSP方案都有单独的波段。
(Gao et al 2020)。该数据集提供了从2020年到2100年(包括)每10年对所有共享社会经济路径(SSP)的城市扩张的未来估计。这些数据的分辨率为⅛度。提供了整个网格转换为城市的概率,而不是二元分类。每张图片对应一个日期,每个SSP方案都有单独的波段。
还要注意的是,这些预测是全面的。见下图(也是与你已经摄入的Li等人的数据进行比较)。对这些数据集有一个谨慎的说法总是好的,并鼓励用户回到论文中去,了解各种假设、方法上的差异,以及它们对用例可能意味着什么。
文献引用:
代码:
var chenSSP = ee.ImageCollection("projects/sat-io/open-datasets/FUTURE-URBAN-LAND/CHEN_2020_2100");
var gaoSSP = ee.ImageCollection("projects/sat-io/open-datasets/FUTURE-URBAN-LAND/GAO_2020_2100");
Map.addLayer(chenSSP.sort('system:time_start').first().select('SSP5').updateMask(chenSSP.sort('system:time_start').first().select('SSP5').neq(0)),{min:1,max:2,palette:['#000000','#FFD700']},'Chen SSP5 2020');
Map.addLayer(chenSSP.sort('system:time_start',false).first().select('SSP5').updateMask(chenSSP.sort('system:time_start',false).first().select('SSP5').neq(0)),{min:1,max:2,palette:['#000000','#FFD700']},'Chen SSP5 2100')
Map.addLayer(gaoSSP.sort('system:time_start').first().select('SSP5'),{min:0,max:1,palette:['#000000','#FFD700']},'Gao SSP5 2020');
Map.addLayer(gaoSSP.sort('system:time_start',false).first().select('SSP5'),{min:0,max:1,palette:['#000000','#FFD700']},'Gao SSP5 2100')
var Dark
=
[
{
"featureType": "all",
"elementType": "labels",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "all",
"elementType": "labels.text",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "all",
"elementType": "labels.text.fill",
"stylers": [
{
"saturation": 36
},
{
"color": "#000000"
},
{
"lightness": 40
}
]
},
{
"featureType": "all",
"elementType": "labels.text.stroke",
"stylers": [
{
"visibility": "on"
},
{
"color": "#000000"
},
{
"lightness": 16
}
]
},
{
"featureType": "all",
"elementType": "labels.icon",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "administrative",
"elementType": "geometry",
"stylers": [
{
"visibility": "on"
}
]
},
{
"featureType": "administrative",
"elementType": "geometry.fill",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 20
}
]
},
{
"featureType": "administrative",
"elementType": "geometry.stroke",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 17
},
{
"weight": 1.2
}
]
},
{
"featureType": "administrative",
"elementType": "labels",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "administrative",
"elementType": "labels.text",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "landscape",
"elementType": "geometry",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 20
}
]
},
{
"featureType": "landscape",
"elementType": "labels.text",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "poi",
"elementType": "geometry",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 21
}
]
},
{
"featureType": "poi",
"elementType": "labels.text",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "road",
"elementType": "geometry.fill",
"stylers": [
{
"visibility": "simplified"
},
{
"color": "#8a4040"
}
]
},
{
"featureType": "road",
"elementType": "geometry.stroke",
"stylers": [
{
"visibility": "on"
},
{
"color": "#ffffff"
}
]
},
{
"featureType": "road",
"elementType": "labels.text",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "road.highway",
"elementType": "geometry.fill",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 17
}
]
},
{
"featureType": "road.highway",
"elementType": "geometry.stroke",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 29
},
{
"weight": 0.2
}
]
},
{
"featureType": "road.arterial",
"elementType": "geometry",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 18
}
]
},
{
"featureType": "road.arterial",
"elementType": "geometry.fill",
"stylers": [
{
"color": "#ffffff"
},
{
"visibility": "on"
}
]
},
{
"featureType": "road.local",
"elementType": "geometry",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 16
}
]
},
{
"featureType": "road.local",
"elementType": "geometry.fill",
"stylers": [
{
"visibility": "on"
},
{
"color": "#faf2f2"
}
]
},
{
"featureType": "transit",
"elementType": "geometry",
"stylers": [
{
"color": "#000000"
},
{
"lightness": 19
}
]
},
{
"featureType": "transit",
"elementType": "labels",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "transit",
"elementType": "labels.text",
"stylers": [
{
"visibility": "off"
}
]
},
{
"featureType": "water",
"elementType": "geometry",
"stylers": [
{
"color": "#b4bcc2"
},
{
"lightness": 17
}
]
},
{
"featureType": "water",
"elementType": "labels",
"stylers": [
{
"visibility": "on"
}
]
},
{
"featureType": "water",
"elementType": "labels.text",
"stylers": [
{
"visibility": "off"
}
]
}
]
Map.setOptions('Dark', {Dark
: Dark
})
代码链接:
https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-landuse-landcover/GLOBAL-URBAN-SCENARIO-PROJECTIONS
License¶
This work is licensed under Creative Commons Attribution 4.0 International for Gao et al 2022 and under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International for Chen et al 2020.
Created by: Gao, et al. 2022 and Chen, et al. 2022
Curated in GEE by : TC Chakraborty and Samapriya Roy
Keywords: urban, SSPs, urban projection, temporal models
Last updated on GEE: 2022-10-23
GEE数据集:SDA-NCSS的土壤调查数据
GEE数据集:美国大陆(CONUS)30米土壤属性概率图数据库
GEE数据集:SDA-NCSS的土壤调查数据
GEE数据集:全球土壤网格数据集
GEE数据集:加拿大高分辨率数字高程模型(HRDEM)
评论(0)