SSURGO(POLARIS)土壤属性的概率重绘--美国大陆(CONUS)30米土壤属性概率图数据库。绘制的CONUS变量包括土壤质地、有机物、pH值、饱和导水率、Brooks-Corey和Van Genuchten保水曲线参数、体积密度和饱和含水量。
Variable |
Description |
Units |
silt |
silt percentage |
% |
sand |
sand percentage |
% |
clay |
clay percentage |
% |
bd |
bulk density |
g/cm3 |
theta_s |
saturated soil water content |
m3/m3 |
theta_r |
residual soil water content |
m3/m3 |
ksat |
saturated hydraulic conductivity |
log10(cm/hr) |
ph |
soil pH in H20 |
N/A |
om |
organic matter |
log10(%) |
lambda |
pore size distribution index (brooks corey) |
N/A |
hb |
bubbling pressure (brooks corey) |
log10(kPa) |
n |
measure of the pore size distribution (van genuchten) |
N/A |
alpha |
scale parameter inversely proportional to mean pore diameter (van genuchten) |
log10(kPa-1) |
文献引用:
Chaney, Nathaniel W., Budiman Minasny, Jonathan D. Herman, Travis W. Nauman, Colby W. Brungard, Cristine LS Morgan Alexander B. McBratney, Eric F. Wood, and Yohannes Yimam. "POLARIS soil properties: 30‐m probabilistic maps of soil properties over the contiguous United States." Water Resources Research 55, no. 4 (2019): 2916-2938.
数据特点¶
POLARIS提供了一个空间上连续的、内部一致的、定量预测的土壤系列。它为SSURGO的主要弱点提供了潜在的解决方案:1)利用周边地区的调查数据填补未绘制区域的空白;2)消除政治边界上的人为不连续性;3)使用高分辨率的环境协变量数据导致粗大多边形的空间分解。
该数据集可从地表获得不同深度的数据,而提供的统计数据包括平均数、模式、中位数和百分位数,只有中位数被包括在所创建的集合中。
Depth from Surface |
0-5 cm |
5-15 cm |
15-30 cm |
30-60 cm |
60-100 cm |
100-200 cm |
总体数据集包括处理大约80,000个文件,这些文件在不同深度的每个属性的集合中被转换为单个图像。例如,bd_mean集合包括bd_0_5,代表连续的美国bd值在距离地表0-5厘米深度的单一图像。
数据提供者的说明¶
05/01/2019 - 变量hb、alpha、ksat、om是在log10空间。
05/01/2019 - 由于文件大小的限制,1 arcsec数据库被分割成1x1度的tiffs。每个变量/层/统计数字都有自己的虚拟栅格,作为所有较小的1x1度块的 "粘合剂"。关于虚拟栅格的更多信息,见
https://www.gdal.org/gdal_vrttut.html.
06/02/2019 - 变量hb和alpha最初报告的单位分别为log10(cm)和log10(cm-1)。这是一个打字错误。正确的单位分别是log10(kPa)和log10(kPa-1)。
代码:
var bd_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/bd_mean');
var clay_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/clay_mean');
var ksat_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/ksat_mean');
var n_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/n_mean');
var om_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/om_mean');
var ph_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/ph_mean');
var sand_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/sand_mean');
var silt_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/silt_mean');
var theta_r_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/theta_r_mean');
var theta_s_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/theta_s_mean');
var lambda_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/lambda_mean');
var hb_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/hb_mean');
var alpha_mean = ee.ImageCollection('projects/sat-io/open-datasets/polaris/alpha_mean');
var palettes = require('users/gena/packages:palettes');
Map.addLayer(bd_mean.first(),{min:0.67,max:1.6,palette:palettes.cmocean.Delta[7]},'bd_mean_0_5',false)
Map.addLayer(clay_mean.first(),{min:3,max:55,palette:palettes.cmocean.Speed[7]},'clay_mean_0_5')
Map.addLayer(ksat_mean.first(),{min:-1,max:1.8,palette:palettes.cmocean.Haline[7]},'ksat_mean_0_5',false)
Map.addLayer(n_mean.first(),{min:1.22,max:1.6,palette:palettes.cmocean.Solar[7]},'n_mean_0_5')
Map.addLayer(om_mean.first(),{min:-0.8,max:1.8,palette:palettes.cmocean.Gray[7]},'om_mean_0_5',false)
Map.addLayer(ph_mean.first(),{min:4,max:9,palette:palettes.cmocean.Oxy[7]},'ph_mean_0_5')
Map.addLayer(sand_mean.first(),{min:5,max:90,palette:palettes.cmocean.Dense[7]},'sand_mean_0_5',false)
Map.addLayer(silt_mean.first(),{min:2,max:80,palette:palettes.cmocean.Curl[7]},'silt_mean_0_5')
Map.addLayer(theta_r_mean.first(),{min:0.022,max:0.15,palette:palettes.cmocean.Algae[7]},'theta_r_mean_0_5',false)
Map.addLayer(theta_s_mean.first(),{min:0.4,max:0.8,palette:palettes.cmocean.Turbid[7]},'theta_s_mean_0_5',false)
Map.addLayer(alpha_mean.first(),{min:-0.15,max:0.2,palette:palettes.cmocean.Speed[7]},'alpha_mean_0_5',false)
Map.addLayer(hb_mean.first(),{min:-0.15,max:0.75,palette:palettes.cmocean.Matter[7]},'hb_mean_0_5',false)
Map.addLayer(lambda_mean.first(),{min:0.2,max:0.5,palette:palettes.cmocean.Balance[7]},'lambda_mean_0_5')
代码连接:
https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:soil-properties/POLARIS-PROBABILISTIC-SOIL-PROPERTIES-30
不适用GEE可以在这里下载: Index of /POLARIS
License¶
POLARIS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Curated by: Samapriya Roy
Keywords: Digital soil mapping, Soil, Environmental modeling, High performance computing
Last updated dataset: 2019-05-04
Last curated: 2022-03-05
GEE数据集:SDA-NCSS的土壤调查数据
GEE数据集:全球土壤网格数据集
会议沙龙| 无人机植被遥感前沿技术与应用学习班[专家授课|限时报名]
GEE数据集:加拿大高分辨率数字高程模型(HRDEM)
GEE数据集:NOAA海平面上升数字高程模型(DEMs)
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
评论(0)