GEE:全球后向散射模型归一化的Sentinel-1地表数据集

举报
此星光明 发表于 2023/02/08 22:15:38 2023/02/08
【摘要】 ​该数据集由维也纳大学大地测量学和地理信息系遥感组在欧洲航天局(ESA)的一个专门项目中生成。哨兵一号全球背向散射模型(S1GBM)通过10米取样的VV-和VH-极化的平均C波段雷达截面来描述2016-17年期间的地球,对表面结构和模式给出了高质量的印象。哨兵一号全球背散射模型(S1GBM)通过10米取样的VV和VH极化的平均C波段雷达截面来描述2016-17年期间的地球。TU Wein中心...

该数据集由维也纳大学大地测量学和地理信息系遥感组在欧洲航天局(ESA)的一个专门项目中生成。哨兵一号全球背向散射模型(S1GBM)通过10米取样的VV-和VH-极化的平均C波段雷达截面来描述2016-17年期间的地球,对表面结构和模式给出了高质量的印象。哨兵一号全球背散射模型(S1GBM)通过10米取样的VV和VH极化的平均C波段雷达截面来描述2016-17年期间的地球。TU Wein中心处理了50万个Sentinel-1场景,总计1.1PB,并进行了半自动质量整理和与轨道几何效应有关的反向散射协调。

整体马赛克质量优于(少数)现有的数据集,轨道不连续造成的印记最小,并且在世界大部分地区成功进行了角度归一化。支持即将到来的雷达传感器的设计和验证,获得的S1GBM数据也可能用于土地覆盖分类和确定植被和土壤状态,以及水体绘图。你可以在这里阅读开放源代码的论文全文。作者进一步介绍了使用Equi7Grid来分配数据集,这是一个高分辨率的优化全球网格来分配数据。

数据集记录
VV和VH马赛克以10米的像素间距采样,与Equi7Grid进行地理参照,并分为六个大陆区(非洲、亚洲、欧洲、北美洲、大洋洲、南美洲),这些大陆区又被划分为100公里范围的方形瓦片("T1 "瓦片)。在这种设置下,S1GBM由六个大洲的16071块瓦片组成,分别为VV和VH,总的压缩数据量为2.67TB。这些文件以汇总的压缩文件形式分发,总共有12个压缩文件。

瓷砖的文件格式是LZW压缩的GeoTIFF,持有16位的整数值,带有编码和地理参考的标签元数据。与常见的地理信息系统如QGIS或ArcGIS以及地理数据库如GDAL兼容。

GEE预处理¶
摄取的是主文件而不是预览文件,文件名被用来为每个平铺图像创建完整的元数据结构。虽然所有的尝试都是为了保证瓷砖的完整性,但每个压缩文件的容量非常大,导致多次尝试失败和断链问题。然而,在下载和摄入GEE的阶段,我们试图重新尝试失败。

例如,一个影像image案例:

M20160104_20171230_TMENSIG38_S1-IWGRDH1VH-_——_B0104_NA010M_E064N036T1.tif

它定义了以下内容。

"M "代表实际的主数据,或 "Q "代表快速浏览文件(关于预览,见下文)。

输入该马赛克瓷砖的数据的开始和结束时间,格式为YYYYMMDD

汇总的统计参数;对于1.0版本,它总是 "TMENSIG38",即归一化为38°的背向散射的平均值。

与输入数据有关的卫星和传感器模式标识符 "S1-IWGRDH1",缩写为Sentinel-1干涉测量宽幅模式,即高分辨率地面范围探测模式。

背向散射极化;所以 "VV "或 "VH"。

维恩大学内部处理引擎的版本,即 "B0104"。

Equi7Grid大陆网格的标识符,像素采样单位为米,例如,"NA010M "表示北美,像素大小为10米。

Equi7Grid大陆网格的标识符,由左下角坐标和网格范围定义;例如,"E064N036 "表示东经6400公里和北纬3600公里,"T1 "表示东部和北部的100公里网格范围。

Earth Engine Snippet: Equi7Grid

var AF_T1 = ee.FeatureCollection("projects/sat-io/open-datasets/equi7grid/EQUI7_V14_AF_GEOG_TILE_T1");
var AN_T1 = ee.FeatureCollection("projects/sat-io/open-datasets/equi7grid/EQUI7_V14_AN_GEOG_TILE_T1");
var AS_T1 = ee.FeatureCollection("projects/sat-io/open-datasets/equi7grid/EQUI7_V14_AS_GEOG_TILE_T1");
var EU_T1 = ee.FeatureCollection("projects/sat-io/open-datasets/equi7grid/EQUI7_V14_EU_GEOG_TILE_T1");
var NA_T1 = ee.FeatureCollection("projects/sat-io/open-datasets/equi7grid/EQUI7_V14_NA_GEOG_TILE_T1");
var OC_T1 = ee.FeatureCollection("projects/sat-io/open-datasets/equi7grid/EQUI7_V14_OC_GEOG_TILE_T1");
var SA_T1 = ee.FeatureCollection("projects/sat-io/open-datasets/equi7grid/EQUI7_V14_SA_GEOG_TILE_T1");


Map.addLayer(AF_T1,{},'AF Tile 1',false)
Map.addLayer(AN_T1,{},'Tile 1',false)
Map.addLayer(AS_T1,{},'Tile 3',false)
Map.addLayer(EU_T1,{},'Tile 6',false)
Map.addLayer(NA_T1,{},'Tile 6',false)
Map.addLayer(OC_T1,{},'Tile 6',false)
Map.addLayer(SA_T1,{},'Tile 6',false)

Map.addLayer(
  AF_T1.style({
    fillColor: '00000000',
    color: '#d53e4f',
  })
);

Map.addLayer(
  AN_T1.style({
    fillColor: '00000000',
    color: '#fc8d59',
  })
);
Map.addLayer(
  AS_T1.style({
    fillColor: '00000000',
    color: '#fee08b',
  })
);
Map.addLayer(
  EU_T1.style({
    fillColor: '00000000',
    color: '#ffffbf',
  })
);
Map.addLayer(
  NA_T1.style({
    fillColor: '00000000',
    color: '#e6f598',
  })
);
Map.addLayer(
  OC_T1.style({
    fillColor: '00000000',
    color: '#99d594',
  })
);

Map.addLayer(
  SA_T1.style({
    fillColor: '00000000',
    color: '#3288bd',
  })
);

样例代码 Equi7Grid: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:geophysical-biological-biogeochemical/EQUI7-GRID

 

var VH = ee.ImageCollection("projects/sat-io/open-datasets/S1GBM/normalized_s1_backscatter_VH");
var VV = ee.ImageCollection("projects/sat-io/open-datasets/S1GBM/normalized_s1_backscatter_VV");


print('Polarization VV',VV.first())
print('Polarization VH',VH.first())

//var palettes = require('users/gena/packages:palettes')
print('VV count',VV.size())
print('VH count',VH.size())
var palette = ['#081d58','#253494','#225ea8','#1d91c0','#41b6c4','#7fcdbb','#c7e9b4','#edf8b1','#ffffd9']


Map.addLayer(VV.mosaic().clip(table),{min:-200,max:-60,palette:palette},'Backscatter VV',false)

var palette = ['#f7fcf5','#e5f5e0','#c7e9c0','#a1d99b','#74c476','#41ab5d','#238b45','#006d2c','#00441b']
Map.addLayer(VH.mosaic().clip(table),{min:-237,max:-70,palette:palette},'Backscatter VH',false)

var Dark
 = 
[
  {
    "featureType": "all",
    "elementType": "labels",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "all",
    "elementType": "labels.text",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "all",
    "elementType": "labels.text.fill",
    "stylers": [
      {
        "saturation": 36
      },
      {
        "color": "#000000"
      },
      {
        "lightness": 40
      }
    ]
  },
  {
    "featureType": "all",
    "elementType": "labels.text.stroke",
    "stylers": [
      {
        "visibility": "on"
      },
      {
        "color": "#000000"
      },
      {
        "lightness": 16
      }
    ]
  },
  {
    "featureType": "all",
    "elementType": "labels.icon",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "administrative",
    "elementType": "geometry",
    "stylers": [
      {
        "visibility": "on"
      }
    ]
  },
  {
    "featureType": "administrative",
    "elementType": "geometry.fill",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 20
      }
    ]
  },
  {
    "featureType": "administrative",
    "elementType": "geometry.stroke",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 17
      },
      {
        "weight": 1.2
      }
    ]
  },
  {
    "featureType": "administrative",
    "elementType": "labels",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "administrative",
    "elementType": "labels.text",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "landscape",
    "elementType": "geometry",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 20
      }
    ]
  },
  {
    "featureType": "landscape",
    "elementType": "labels.text",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "poi",
    "elementType": "geometry",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 21
      }
    ]
  },
  {
    "featureType": "poi",
    "elementType": "labels.text",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "road",
    "elementType": "geometry.fill",
    "stylers": [
      {
        "visibility": "simplified"
      },
      {
        "color": "#8a4040"
      }
    ]
  },
  {
    "featureType": "road",
    "elementType": "geometry.stroke",
    "stylers": [
      {
        "visibility": "on"
      },
      {
        "color": "#ffffff"
      }
    ]
  },
  {
    "featureType": "road",
    "elementType": "labels.text",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "road.highway",
    "elementType": "geometry.fill",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 17
      }
    ]
  },
  {
    "featureType": "road.highway",
    "elementType": "geometry.stroke",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 29
      },
      {
        "weight": 0.2
      }
    ]
  },
  {
    "featureType": "road.arterial",
    "elementType": "geometry",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 18
      }
    ]
  },
  {
    "featureType": "road.arterial",
    "elementType": "geometry.fill",
    "stylers": [
      {
        "color": "#ffffff"
      },
      {
        "visibility": "on"
      }
    ]
  },
  {
    "featureType": "road.local",
    "elementType": "geometry",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 16
      }
    ]
  },
  {
    "featureType": "road.local",
    "elementType": "geometry.fill",
    "stylers": [
      {
        "visibility": "on"
      },
      {
        "color": "#faf2f2"
      }
    ]
  },
  {
    "featureType": "transit",
    "elementType": "geometry",
    "stylers": [
      {
        "color": "#000000"
      },
      {
        "lightness": 19
      }
    ]
  },
  {
    "featureType": "transit",
    "elementType": "labels",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "transit",
    "elementType": "labels.text",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  },
  {
    "featureType": "water",
    "elementType": "geometry",
    "stylers": [
      {
        "color": "#b4bcc2"
      },
      {
        "lightness": 17
      }
    ]
  },
  {
    "featureType": "water",
    "elementType": "labels",
    "stylers": [
      {
        "visibility": "on"
      }
    ]
  },
  {
    "featureType": "water",
    "elementType": "labels.text",
    "stylers": [
      {
        "visibility": "off"
      }
    ]
  }
]
Map.setOptions('Dark', {Dark
: Dark
})

 

 

样例代码: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:geophysical-biological-biogeochemical/S1-GLOBAL-BACKSCATTER

数据引用:

Bauer-Marschallinger, Bernhard, Senmao Cao, Claudio Navacchi, Vahid Freeman, Felix Reuß, Dirk Geudtner, Björn Rommen et al. "The normalised Sentinel-1 Global Backscatter Model, mapping Earth’s land surface with C-band microwaves." Scientific Data 8, no. 1 (2021): 1-18.

 

在官网查看数据集

The layer is also made available for visualization from Earth Observation Data Centre (EODC) under Sentinel-1 Global Backscatter Model.

License

This work is licensed under a Creative Commons Attribution 4.0 International License. You are free to copy and redistribute the material in any medium or format, and to transform and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Curated by: Bernhard et al, European Space Agency

Keywords: Mosaic, Sentinel-1, Backscatter, Normalized, VV, VH, polarization, S1GBM, European Space Agency, ESA

Last data update: 2021-10-26

Last updated on GEE: 2021-11-07

 

 GEE:Geomorpho90m全球数据集(还把梯度、崎岖程度、 地貌形态)

gee:1992-2019年全球电力消费GDP数据集

gee数据集:美国建筑物数据集

GEE 错误:ImageCollection.error, argument 'images': Invalid type.

gee:全球2014年至2021年的Bing地图图像中检测到777M的建筑数据集

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。