C++从入门到精通(第七篇) :vector深度剖析及模拟实现

举报
雪芙花 发表于 2022/04/20 17:04:40 2022/04/20
【摘要】 vector深度剖析及模拟实现 vector的介绍及使用 vector的介绍vector是表示可变大小数组的序列容器。就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素 进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自 动处理。本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,...

vector深度剖析及模拟实现

vector的介绍及使用

vector的介绍

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素 进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自 动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小 为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是
    一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大 小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存 储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是
    对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增 长。
  6. 与其它动态序列容器相比(deques, lists and forward_lists), vector在访问元素的时候更加高效,在 末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起lists和 forward_lists统一的迭代器和引用更好

学习方法:使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学

vector的使用

vector()(重点)

无参构造

vector(size_type n, const value_type& val = value_type())

构造并初始化n个val

vector (const vector& x); (重点)

拷贝构造

vector (InputIterator first, InputIterator last);

使用迭代器进行初始化构造

// constructing vectors
#include <iostream>
#include <vector>
int main ()
{
// constructors used in the same order as described above:
std::vector<int> first; // empty vector of ints
std::vector<int> second (4,100); // four ints with value 100
std::vector<int> third (second.begin(),second.end()); // iterating through second
std::vector<int> fourth (third); // a copy of third
// 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分
// the iterator constructor can also be used to construct from arrays:
int myints[] = {16,2,77,29};
std::vector<int> fifth (myints, myints + sizeof(myints) / sizeof(int) );
std::cout << "The contents of fifth are:";
for (std::vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)
std::cout << ' ' << *it;
std::cout << '\n';
return 0;
}

vector iterator 的使用

begin +end(重点)

获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置

的iterator/const_iterator

rbegin + rend

获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <vector>
using namespace std;
void PrintVector(const vector<int>& v)
{
// const对象使用const迭代器进行遍历打印
vector<int>::const_iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
int main()
{
// 使用push_back插入4个数据
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
// 使用迭代器进行遍历打印
vector<int>::iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
// 使用迭代器进行修改
it = v.begin();
while (it != v.end())
{
*it *= 2;
++it;
}
// 使用反向迭代器进行遍历再打印
vector<int>::reverse_iterator rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
PrintVector(v);
return 0;
}

vector 空间增长问题

size

获取数据个数

capacity

获取容量大小

empty

判断是否为空

resize(重点)

改变vector的size

reserve (重点)

改变vector放入capacity

  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。
    这个问题经常会考察,不要固化的认为,顺序表增容都是2倍,具体增长多少是根据具体的需求定义
    的。vs是PJ版本STL,g++是SGI版本STL。
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问
    题。
  • resize在开空间的同时还会进行初始化,影响size。
// vector::capacity
#include <iostream>
#include <vector>
int main ()
{
size_t sz;
std::vector<int> foo;
sz = foo.capacity();
std::cout << "making foo grow:\n";
for (int i=0; i<100; ++i) {
foo.push_back(i);
if (sz!=foo.capacity()) {
sz = foo.capacity();
std::cout << "capacity changed: " << sz << '\n';
}
}
}
vs:运行结果:
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141
g++运行结果:
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
// vector::reserve
#include <iostream>
#include <vector>
int main ()
{
size_t sz;
std::vector<int> foo;
sz = foo.capacity();
std::cout << "making foo grow:\n";
for (int i=0; i<100; ++i) {
foo.push_back(i);
if (sz!=foo.capacity()) {
sz = foo.capacity();
std::cout << "capacity changed: " << sz << '\n';
}
}
std::vector<int> bar;
sz = bar.capacity();
bar.reserve(100); // this is the only difference with foo above
std::cout << "making bar grow:\n";
for (int i=0; i<100; ++i) {
bar.push_back(i);
if (sz!=bar.capacity()) {
sz = bar.capacity();
std::cout << "capacity changed: " << sz << '\n';
}
}
return 0;
}

vector 增删查改

push_back(重点)

尾插

pop_back (重点)

尾删

find 查找。

(注意这个是算法模块实现,不是vector的成员接口)

insert

在position之前插入val

erase

删除position位置的数据

swap

交换两个vector的数据空间

operator[] (重点)

像数组一样访问

// push_back/pop_back
#include <iostream>
#include <vector>
using namespace std;
int main()
{
int a[] = { 1, 2, 3, 4 };
vector<int> v(a, a+sizeof(a)/sizeof(int));
vector<int>::iterator it = v.begin();
while (it != v.end()) {
cout << *it << " ";
++it;
}
cout << endl;
v.pop_back();
v.pop_back();
it = v.begin();
while (it != v.end()) {
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}

vector 迭代器失效问题。(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了
封装,比如:vector的迭代器就是原生态指针T*。因此迭代器失效,实际就是迭代器底层对应指针所指向的
空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,
程序可能会崩溃)。

  • 对于vector可能会导致其迭代器失效的操作有:
  1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、
    push_back等
#include <iostream>
using namespace std;
#include <vector>
int main()
{
vector<int> v{1,2,3,4,5,6};
auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);
// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);
// 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
// v.push_back(8);
// 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);
/*
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。
*/
while(it != v.end())
{
cout<< *it << " " ;
++it;
}
cout<<endl;
return 0;
}
  1. 指定位置元素的删除操作–erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{
int a[] = { 1, 2, 3, 4 };
vector<int> v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector<int>::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代
器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是
没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效
了。

vector模拟实现

在这里插入图片描述
在这里插入图片描述

模拟实现

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
namespace ymh
{
	template<class T>
	class vector {
	public:
		typedef	T iterator;
		vector()
			:_start(nullptr),
			_finish(nullptr),
			_endofstorage(nullptr)
		{}
		//迭代器构造
		template <class InputIterator>
		//迭代器构造
		vector(InputIterator first, InputIterator end)
			:_start(nullptr),
			_finish(nullptr),
			_endofstorage(nullptr)
		{
			while (first != end)
			{
				push_back(*first);
				first++;
			}
		}
		//拷贝构造
		vector(const vector& v)
			:_start(nullptr),
			_finish(nullptr),
			_endofstorage(nullptr)
		{
			//swap(this,v);  假如传的是const的对象 , 就交换不了了

			_start = new T[v.capacity()];
			_finish = _start + v.size();
			_endofstorage = _start + v.capacity();

			//赋值

			//memcpy(_start, v._start, sizeof(T) * v.size());  不能这样写, 会有深拷贝中的浅拷贝危险(会释放堆里的空间)
			for (size_t i = 0; i < v.size(); i++)   
			{
				_start[i] = v._start[i];
			}
		}

		//交换
		void swap(vector& v)
		{
			::swap(_start, v._start);
			::swap(_finish, v._finish);
			::swap(_endofstorage, v._endofstorage);
		}

		//运算符重载
		vector<T>& operator =(vector<T> v)
		{
			swap(v);
			return *this;
		}

		//析构函数
		~vector()
		{
			if (_start)
			{
				delete[] _start;
			}
			_start = _finish = _endofstorage = nullptr;
		}

		//迭代器
		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator begin() const
		{
			return _start;
		}

		const_iterator end() const
		{
			return _finish;
		}

		//内存
		size_t capacity() const
		{
			return _endofstorage - _start;
		}

		size_t size() const
		{
			return _finish - _start;
		}

		bool empty() const
		{
			return _finish == _start;
		}

		//[]重载
		T& operator [](size_t i)
		{
			//记得断言
			assert(i < size());

			return _start[i];
	    }

		//resize
		void resize(size_t n, T t=T())
		{
			if (n < size())
			{
				_finish = _start + n;
			}
			else
			{
				if (n > capacity())
				{
					reserve(n);
				}

				while (_finish < _start + n)
				{
					*_finish = t;
					_finish++;
				}
			}
		}

		//reserve
		void reserve(size_t n)
		{
			// n<capacity 不用变化

			if (n > capacity()) //扩容
			{
				size_t sz = size();
				T* tem = new T[n];

				if (_start != nullptr)
				{
					//memcpy(tmp, _start, sz*sizeof(T)); 还是一样的问题,不能用memcpy
					for (size_t i = 0; i < sz; i++)
					{
						tem[i] = _start[i]; //如果是类,就会去调用类的构造函数,就不存在 浅拷贝 了
					}

					//记得delete之前的内存
					delete[] _start;
				}
				_start = tem;
				_finish = _start + sz;
				_endofstorage = _start + n;
			}
		}

		void push_back(T& t)
		{
			if (_finish == _endofstorage)
			{
				size_t new_capacity = capacity() == 0 ? 4 : capacity() * 2;
				reserev(new_capacity);
			}

			*_finish = t;
			_finish++:
		}

		void pop_back()
		{
			assert(!empty());

			_finish--;
		}

		void insert(iterator pos,const T& t)
		{
			if (_finish == _endofstorage)
			{
				size_t len = pos - _start; //在vector中的相对位置
				size_t new_capacity = capacity() == 0 ? 4 : capacity() * 2;
				reserve(new_capacity);

				pos = _start + len;
			}
			while (pos + 1 <= _finish)
			{
				*(pos + 1) = *pos;
				pos++;
			}
			*(_start + len) = t;
			_finish++;
		}

		iterator erase(iterator pos)
		{
			iterator it = pos + 1;
			while (it < _finish)
			{
				*(it - 1) = *it;
				it++;
			}
			_finish--;

			return pos;
		}
	private:
		iterator _start;
		iterator _finish;
		iterator _endofstorage;
	};
}

使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?

int main()
{
bite::vector<bite::string> v;
v.push_back("1111");
v.push_back("2222");
v.push_back("3333");
return 0;
}
  • 问题分析:
  1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
  2. 如果拷贝的是自定义类型的元素,memcpy即高效又不会出错,但如果拷贝的是自定义类型元素,并且
    自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是
浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test5(size_t n)
{
	// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>
	cole::vector<cole::vector<int>> vv(n);
	// 将二维数组每一行中的vecotr<int>中的元素全部设置为1
	for (size_t i = 0; i < n; ++i)
		vv[i].resize(i + 1, 1);
	// 给杨慧三角出第一列和对角线的所有元素赋值
	for (int i = 2; i < n; ++i)
	{
		for (int j = 1; j < i; ++j)
		{
			vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];
		}
	}
}

构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为5时如下所示:

在这里插入图片描述

  • vv中元素填充完成之后,如下图所示:
  • 在这里插入图片描述

使用标准库中vector构建动态二维数组时与上图实际是一致的。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。