二叉排序树

举报
周小末天天开心 发表于 2022/12/31 22:54:58 2022/12/31
【摘要】 二叉排序树二叉排序树介绍二叉排序树,BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当 前节点的值小,右子节点的值比当前节点的值大。特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点。二叉排序树创建和遍历一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 1...

二叉排序树

二叉排序树介绍

二叉排序树,BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当 前节点的值小,右子节点的值比当前节点的值大。

特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点。

二叉排序树创建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9)创建成对应的二叉排序树为:


public void add(Node node) {
    if(node == null) {
        return;
    }
    if(node.value < this.value) {
        //如果左节点为空
        if(this.left == null) {     
            this.left == node;
        } else {//如果不为空,递归添加
            this.left.add(node);
        }  
    } else {
        if(this.right == null) {
            this.right = node;
        } else {//如果不为空,递归添加
            this.right.add(node);
        }   
    }
}

//向二叉排序树添加节点
public void add(Node node) {
    //如果是一棵空树,则直接赋给root即可
    if(root == null) {
        root = node;
    } else {
        root.add(node);
    }
}

二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

1)删除叶子节点 (比如:2, 5, 9, 12)

2)删除只有一棵子树的节点 (比如:1)

3)删除有两棵子树的节点. (比如:7, 3,10 )

思路分析

第一种情况:

删除叶子节点 (比如:2, 5, 9, 12)

(1) 需求先去找到要删除的结点 targetNode

(2) 找到 targetNode 的 父结点 parent

(3) 确定 targetNode 是 parent 的左子结点 还是右子结点

(4) 根据前面的情况来对应删除

左子结点 parent.left = null

右子结点 parent.right = null;

第二种情况:

删除只有一棵子树的节点(比如 1)

(1) 需要先去找到要删除的结点 targetNode

(2) 找到 targetNode 的 父结点 parent

(3) 确定 targetNode 的子结点是左子结点还是右子结点

(4) targetNode 是 parent 的左子结点还是右子结点

(5) 如果 targetNode 有左子结点

1)如果 targetNode 是 parent 的左子结点parent.left = targetNode.left;

2)如果 targetNode 是 parent 的右子结点 parent.right = targetNode.left;

(6) 如果 targetNode 有右子结点

1)如果 targetNode 是 parent 的左子结点 parent.left = targetNode.right;

2)如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right;

第三种情况:

删除有两颗子树的节点. (比如:7, 3,10 )

(1) 需求先去找到要删除的结点 targetNode

(2) 找到 targetNode 的父结点 parent

(3) 从 targetNode 的右子树找到最小的结点

(4) 用一个临时变量,将 最小结点的值保存 temp = 11

(5) 删除该最小结点

(6) targetNode.value = temp

二叉排序树删除结点的代码实现

public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        
        //循环的添加结点到二叉排序树
        for(int i = 0; i< arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        
        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~");
        binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
        //测试一下删除叶子结点
        binarySortTree.delNode(12);
        binarySortTree.delNode(5);
        binarySortTree.delNode(10);
        binarySortTree.delNode(2);
        binarySortTree.delNode(3);
        binarySortTree.delNode(9);
        binarySortTree.delNode(1);
        binarySortTree.delNode(7);
        System.out.println("root=" + binarySortTree.getRoot());
        System.out.println("删除结点后");
        binarySortTree.infixOrder();
    }
}

//创建二叉排序树
class BinarySortTree {
    private Node root;
    public Node getRoot() {
        return root;
    }
    
    //查找要删除的结点
    public Node search(int value) {
        if(root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }
    
    //查找父结点
    public Node searchParent(int value) {
        if(root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }
    
    //编写方法:
    //1. 返回的 以 node 为根结点的二叉排序树的最小结点的值
    //2. 删除 node 为根结点的二叉排序树的最小结点
    /**
    *
    * @param node 传入的结点(当做二叉排序树的根结点)
    * @return 返回的 以 node 为根结点的二叉排序树的最小结点的值
    */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左子节点,就会找到最小值
        while(target.left != null) {
            target = target.left;
        }
        //这时 target 就指向了最小结点
        //删除最小结点
        delNode(target.value);
        return target.value;
    }
    
    //删除结点
    public void delNode(int value) {
        if(root == null) {
            return;
        }else {
            //1.需求先去找到要删除的结点 targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if(targetNode == null) {
                return;
            }
            //如果我们发现当前这颗二叉排序树只有一个结点
            if(root.left == null && root.right == null) {
                root = null;
                return;
            }
        
            //去找到 targetNode 的父结点
            Node parent = searchParent(value);
            //如果要删除的结点是叶子结点
            if(targetNode.left == null && targetNode.right == null) {
                //判断 targetNode 是父结点的左子结点,还是右子结点
                if(parent.left != null && parent.left.value == value) { //是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//是由子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else { // 删除只有一颗子树的结点
                //如果要删除的结点有左子结点
                if(targetNode.left != null) {
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { // targetNode 是 parent 的右子结点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else { //如果要删除的结点有右子结点
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { //如果 targetNode 是 parent 的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
            }
        }
    }

    //添加结点的方法
    public void add(Node node) {
        if(root == null) {
            root = node;//如果 root 为空则直接让 root 指向node
        } else {
            root.add(node);
        }
    }

    //中序遍历
    public void infixOrder() {
        if(root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

//创建 Node 结点
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        this.value = value;
    }
    
    //查找要删除的结点
    /**
    *
    * @param value 希望删除的结点的值
    * @return 如果找到返回该结点,否则返回 null
    */
    
    public Node search(int value) {
        if(value == this.value) { //找到就是该结点
            return this;
        } else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
            //如果左子结点为空
            if(this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else { //如果查找的值不小于当前结点,向右子树递归查找
            if(this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }

    //查找要删除结点的父结点
    /**
    *
    * @param value 要找到的结点的值
    * @return 返回的是要删除的结点的父结点,如果没有就返回 null
    */
    
    public Node searchParent(int value) {
        //如果当前结点就是要删除的结点的父结点,就返回
        if((this.left != null && this.left.value == value) ||
            (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if(value < this.value && this.left != null) {
                return this.left.searchParent(value); //向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value); //向右子树递归查找
            } else {
                return null; // 没有找到父结点
            }
        }
    }
    
    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }
    //添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if(node == null) {
        return;
    }
    
    //判断传入的结点的值,和当前子树的根结点的值关系
    if(node.value < this.value) {
        //如果当前结点左子结点为 null
        if(this.left == null) {
            this.left = node;
        } else {
            //递归的向左子树添加
            this.left.add(node);
        }
    } else { //添加的结点的值大于 当前结点的值
        if(this.right == null) {
            this.right = node;
        } else {
            //递归的向右子树添加
            this.right.add(node);
        }
    }
}
    //中序遍历
    public void infixOrder() {
        if(this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if(this.right != null) {
            this.right.infixOrder();
        }
    }
}

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。