操作系统——进程和线程
其他文章
操作系统——概述
操作系统——内存管理
操作系统——进程和线程
操作系统——进程间通信
操作系统——文件系统
操作系统——设备管理
操作系统——网络系统
进程
进程的概念
我们编写的代码只是一个存储在硬盘的静态文件,通过编译后就会生成二进制可执行文件,当我们运行这个可执行文件后,它会被装载到内存中,接着 CPU 会执行程序中的每一条指令,那么这个运行中的程序,就被称为「进程」。
我们把操作系统做某件事,抽象成一种概念,称之为一个任务。一个进程可以对应一个任务,也可以对应多个任务。
早期的计算机只有一个 CPU,多个任务需要运行怎么办?需要依次排队等待,串行执行,一个任务执行完毕,才能执行下一个。这种方式存在着明显的弊端,假设排在前面的 A 任务需要执行5小时,而排后面的B任务仅需要1分钟,那么 B 任务必须等待 A 任务5小时完成后,才能执行,这种方式显得极其不灵活。
后来就有了多任务系统,在CPU同一时间只能处理一个任务的前提下,每个任务有一定的执行时长,比如任务A执行0.001s,切换到任务B执行0.05s,再切换到任务C执行0.01s…不断循环。这种机制也就可以在一定程度上解决上述任务B需要长时间等待的问题。
由于 CPU 速度非常快,这种多个任务不断切换,会给用户一种任务并行执行的错觉,这种也被称为是伪并行调度。既然有伪并行,那么也会有真并行。在现代计算机中,常见的CPU核数可以达到8核甚至更多,操作系统可将每一个核视为一个CPU,那么8核CPU就可以真并行执行8个任务。
并发和并行有什么区别?
伪并行虽然可以解决上述任务等待的问题,但是依然还存在一系列未解之谜:
- 每个任务应该执行多长时间?
- 如何找到要执行的下一个任务?
- 有些任务涉及了资源操作,执行到一半,切换任务,那么这些资源怎么办?
为了解决上面一系列谜题,我们需要一种模型对任务进行详尽的描述记录。
进程的状态
那么什么原因会导致进程会被创建,从而生成PCB呢?常见的有以下几种
- 系统初始化
- 用户通过系统提供的API创建新进程
- 批处理作业初始化 (什么是批处理作业)
- 由现有进程派生子进程
一个进程,因为某种原因被创建了,那么它可以按照以下步骤进行一系列的初始化
- 给新进程分配一个进程ID
- 分配内存空间
- 初始化PCB
- 进入就绪队列
五状态模型
如图,进入就绪队列,其状态就会变为就绪态。各个状态之间的关系描述如下:
就绪 -> 运行:当操作系统内存在着调度程序,当需要运行一个新进程时,调度程序选择一个就绪态的进程,让其进入运行态。
运行 -> 就绪:运行态的进程,会占有CPU(参照一开始的饼状图)。每个进程会被分配一定的执行时间,当时间结束后,重新回到就绪态。
运行 -> 阻塞:进程请求调用系统的某些服务,但是操作系统没法立即给它(比如这种服务可能要耗时初始化,比如I/O资源需要等待),那么它就会进入阻塞态。
阻塞 -> 就绪:当等待结束了,就由阻塞态进入就绪态。
运行 -> 终止:当进程表示自己已经完成了,它会被操作系统终止。
这便是对于单个进程,经典的五状态模型。当存在多个进程时,由于同一时间只能有一个进程在执行,那么如何去管理这一系列的处于阻塞态和就绪态的进程呢?一般来说,会使用就绪队列,和阻塞队列,让处于阻塞态和就绪态的进程进入队列,排队执行。
七状态模型
一旦排队的进程多了,对于有限的内存空间将会是极大的考验。为了解决内存占用问题,可以将一部分内存中的进程交换到磁盘中,这些被交换到磁盘的进程,会进入挂起状态
挂起状态可以分为两种:
- 阻塞挂起状态:进程在外存(硬盘)并等待某个事件的出现;
- 就绪挂起状态:进程在外存(硬盘),但只要进入内存,即刻立刻运行;
这两种挂起状态加上前面的五种状态,就变成了七种状态变迁,见如下图:
进程的控制结构
对于一个被执行的程序,操作系统会为该程序创建一个进程。进程作为一种抽象概念,可将其视为一个容器,该容器聚集了相关资源,包括地址空间,线程,打开的文件,保护许可等。而操作系统本身是一个程序,有一句经典的话 程序 = 算法 + 数据结构,因此对于单个进程,可以基于一种数据结构来表示它,这种数据结构称之为进程控制块(PCB)
在操作系统中,是用进程控制块(process control block,PCB)数据结构来描述进程的。
PCB 是进程存在的唯一标识,这意味着一个进程的存在,必然会有一个 PCB,如果进程消失了,那么 PCB 也会随之消失。
PCB 具体包含什么信息呢?
每个 PCB 是如何组织的呢?
通常是通过链表的方式进行组织,把具有相同状态的进程链在一起,组成各种队列。比如:
- 将所有处于就绪状态的进程链在一起,称为就绪队列;
- 把所有因等待某事件而处于等待状态的进程链在一起就组成各种阻塞队列;
- 另外,对于运行队列在单核 CPU 系统中则只有一个运行指针了,因为单核 CPU 在某个时间,只能运行一个程序。
那么,就绪队列和阻塞队列链表的组织形式如下图:
除了链接的组织方式,还有索引方式,它的工作原理:将同一状态的进程组织在一个索引表中,索引表项指向相应的 PCB,不同状态对应不同的索引表。
一般会选择链表,因为可能面临进程创建,销毁等调度导致进程状态发生变化,所以链表能够更加灵活的插入和删除。
进程的切换
当一个正在运行中的进程被中断,操作系统指定另一个就绪态的进程进入运行态,这个过程就是进程切换,也可以叫上下文切换。
该切换过程一般涉及以下步骤:
1.保存处理器上下文环境:将CPU程序计数器和寄存器的值保存到当前进程的私有堆栈里
2.更新当前进程的PCB(包括状态更变)
3.将当前进程移到就绪队列或者阻塞队列
4.根据调度算法,选择就绪队列中一个合适的新进程,将其更改为运行态
5.更新内存管理的数据结构
6.新进程内对堆栈所保存的上下文信息载入到CPU的寄存器和程序计数器,占有CPU
发生进程上下文切换有哪些场景?
- 为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行;
- 进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行;
- 当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度;
- 当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行;
- 发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序;
以上,就是发生进程上下文切换的常见场景了。
线程
在早期的操作系统中都是以进程作为独⽴运⾏的基本单位,直到后⾯,计算机科学家们⼜提出了更⼩的能独⽴运⾏的基本单位,也就是线程。
什么是线程?
线程是进程当中的⼀条执⾏流程。
同⼀个进程内多个线程之间可以共享代码段、数据段、打开的⽂件等资源,但每个线程各⾃都有⼀套独⽴的寄存器和栈,这样可以确保线程的控制流是相对独⽴的。
我们一开始提及过,操作系统底层存在调度程序,调度程序可调度任务,而单线程进程,每个进程可以对应一个任务。现在,对于多线程的进程,每一个线程最终对于调度程序来说,都是一个任务,如下图(Linux系统)。因此也有一种流行的说法线程是CPU调度的基本单位
线程的上下文切换
线程与进程最大的区别在于:线程是调度的基本单位,而进程则是资源拥有的基本单位。
所以,所谓操作系统的任务调度,实际上的调度对象是线程,而进程只是给线程提供了虚拟内存、全局变量等资源。
对于线程和进程,我们可以这么理解:
- 当进程只有一个线程时,可以认为进程就等于线程;
- 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源,这些资源在上下文切换时是不需要修改的;
另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。
线程上下文切换的是什么?
这还得看线程是不是属于同一个进程:
- 当两个线程不是属于同一个进程,则切换的过程就跟进程上下文切换一样;
- 当两个线程是属于同一个进程,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据;
所以,线程的上下文切换相比进程,开销要小很多。
进程调度
进程都希望自己能够占用 CPU 进行工作,那么这涉及到前面说过的进程上下文切换。
一旦操作系统把进程切换到运行状态,也就意味着该进程占用着 CPU 在执行,但是当操作系统把进程切换到其他状态时,那就不能在 CPU 中执行了,于是操作系统会选择下一个要运行的进程。
选择一个进程运行这一功能是在操作系统中完成的,通常称为调度程序(scheduler)。
那到底什么时候调度进程,或以什么原则来调度进程呢?
什么时候调度进程
在进程的生命周期中,当进程从一个运行状态到另外一状态变化的时候,其实会触发一次调度。
比如,以下状态的变化都会触发操作系统的调度:
- 从就绪态 -> 运行态:当进程被创建时,会进入到就绪队列,操作系统会从就绪队列选择一个进程运行;
- 从运行态 -> 阻塞态:当进程发生 I/O 事件而阻塞时,操作系统必须另外一个进程运行;
- 从运行态 -> 结束态:当进程退出结束后,操作系统得从就绪队列选择另外一个进程运行;
因为,这些状态变化的时候,操作系统需要考虑是否要让新的进程给 CPU 运行,或者是否让当前进程从 CPU 上退出来而换另一个进程运行。
另外,如果硬件时钟提供某个频率的周期性中断,那么可以根据如何处理时钟中断
,把调度算法分为两类:
- 非抢占式调度算法挑选一个进程,然后让该进程运行直到被阻塞,或者直到该进程退出,才会调用另外一个进程,也就是说不会理时钟中断这个事情。
- 抢占式调度算法挑选一个进程,然后让该进程只运行某段时间,如果在该时段结束时,该进程仍然在运行时,则会把它挂起,接着调度程序从就绪队列挑选另外一个进程。这种抢占式调度处理,需要在时间间隔的末端发生时钟中断,以便把 CPU 控制返回给调度程序进行调度,也就是常说的时间片机制。
以什么原则来调度进程
五种调度原则:
- CPU 利用率:调度程序应确保 CPU 是始终匆忙的状态,这可提高 CPU 的利用率;
- 系统吞吐量:吞吐量表示的是单位时间内 CPU 完成进程的数量,长作业的进程会占用较长的 CPU 资源,因此会降低吞吐量,相反,短作业的进程会提升系统吞吐量;
- 周转时间:周转时间是进程运行和阻塞时间总和,一个进程的周转时间越小越好;
- 等待时间:这个等待时间不是阻塞状态的时间,而是进程处于就绪队列的时间,等待的时间越长,用户越不满意;
- 响应时间:用户提交请求到系统第一次产生响应所花费的时间,在交互式系统中,响应时间是衡量调度算法好坏的主要标准。
说白了,这么多调度原则,目的就是要使得进程要「快」。
进程调度算法
常见的进程调度算法有:
- 先来先服服务
- 时间片轮转
- 最短作业优先
- 最短剩余时间优先
- 优先级调度
- 多级反馈队列调度
先来先服务
先来先服务(First Come First Serverd, FCFS)。先进就绪队列,则先被调度,先来先服务是最简单的调度算法。
先来先服务存在上面谈论过的问题:当前面任务耗费很长时间执行,那么后面的任务即使只需要执行很短的时间,也必须一直等待。属于非抢占式
时间片轮转调度
每一个进程会被分配一个时间片,表示允许该进程在这个时间段运行,如果时间结束了,进程还没运行完毕,那么会通过抢占式调度,将CPU分配给其他进程,该进程回到就绪队列。这是一种最简单最公平的调度算法,但是有可能会存在问题。由于进程的切换,需要耗费时间,如果时间片太短,频繁进行切换,会影响效率。如果进程时间片太长,有可能导致排后面的进程等待太长时间。因此时间片的长度,需要有大致合理的数值。(《现代操作系统》的观点是建议时间片长度在20ms~50ms)。
最短作业优先
最短作业优先(Shortest Job First, SJF),顾名思义即进程按照作业时间长短排队,作业时间段的排前面先执行,如 下图。
这显然对长作业不利,很容易造成一种极端现象。
比如,一个长作业在就绪队列等待运行,而这个就绪队列有非常多的短作业,那么就会使得长作业不断的往后推,周转时间变长,致使长作业长期不会被运行。
最短剩余时间优先
最短剩余时间优先(Shortest Remaining Time Next),从就绪队列中选择剩余时间最短的进程进行调度。该算法可以理解最短作业优先和时间片轮转的结合。如果没有时间片,那么最短剩余时间其实就是最短作业时间,因为每个进程都是从头执行到尾。
优先级调度
假设就绪队列中有如下进程
进程 | 执行时间 | 优先级 |
---|---|---|
p1 | 5 | 1 |
p2 | 2 | 3 |
p3 | 3 | 2 |
按照优先级调度,执行顺序为p1->p3->p2。如果多个进程优先级相同,则按照先来先服务的方式依次执行。
优先级调度可以进一步细分为抢占式和非抢占式。
非抢占式:和上面提及的非抢占式类似,一旦该进程占有CPU就将一直执行到结束或者阻塞。
抢占式:进程执行期间,一旦有更高优先级的进程进入就绪队列,那么该进程就会被暂停,重回就绪队列,让更高优先级的进程执行。但是为了防止最高优先级进程一直执行,每个进程依然有自己的时间片,每次时间片结束后,会根据一定规则降低该进程优先级,避免某些最高优先级长作业进程一直占用CPU。
但是依然有缺点,可能会导致低优先级的进程永远不会运行。
多级反馈队列调度
多级反馈队列调度基于时间片轮转和优先级调度,设置多个就绪队列,赋予每个就绪队列优先级,优先级越高的队列进程的时间片越短。如下图,第1级就绪队列优先级最高,进程的时间片长度最短,第2级就绪队列次之,以此类推。
当有新的进程创建时,先进入第1级就绪队列,时间片结束之前就运行完毕,则终止,否则进入第2级队列等待下一次调度。在n级队列之前,进程按照先到先服务规则依次调度,到了第n级队列(最后一级)采用时间片轮转调度。仅当第1级队列为空时,才调度第2级队列的进程,如果第i级队列的进程正在运行,此时有一个更高优先级的进程进入,则会停下第i级的进程,让它回到第i级队列尾部,转而执行更高优先级的进程,即满足优先级调度算法的原则。
可以发现,对于短作业可能可以在第一级队列很快被处理完。对于长作业,如果在第一级队列处理不完,可以移入下次队列等待被执行,虽然等待的时间变长了,但是运行时间也会更长了,所以该算法很好的兼顾了长短作业,同时有较好的响应时间。
拿去银行办业务的例子,把上面的调度算法串起来
办理业务的客户相当于进程,银行窗口工作人员相当于 CPU。
现在,假设这个银行只有一个窗口(单核 CPU ),那么工作人员一次只能处理一个业务。
那么最简单的处理方式,就是先来的先处理,后面来的就乖乖排队,这就是先来先服务(FCFS)调度算法。但是万一先来的这位老哥是来贷款的,这一谈就好几个小时,一直占用着窗口,这样后面的人只能干等,或许后面的人只是想简单的取个钱,几分钟就能搞定,却因为前面老哥办长业务而要等几个小时,你说气不气人?
有客户抱怨了,那我们就要改进,我们干脆优先给那些几分钟就能搞定的人办理业务,这就是短作业优先(SJF)调度算法。听起来不错,但是依然还是有个极端情况,万一办理短业务的人非常的多,这会导致长业务的人一直得不到服务,万一这个长业务是个大客户,那不就捡了芝麻丢了西瓜
那就公平起见,现在窗口工作人员规定,每个人我只处理 10 分钟。如果 10 分钟之内处理完,就马上换下一个人。如果没处理完,依然换下一个人,但是客户自己得记住办理到哪个步骤了。这个也就是时间片轮转(RR)调度算法。但是如果时间片设置过短,那么就会造成大量的上下文切换,增大了系统开销。如果时间片过长,相当于退化成退化成 FCFS 算法了。
既然公平也可能存在问题,那银行就对客户分等级,分为普通客户、VIP 客户、SVIP 客户。只要高优先级的客户一来,就第一时间处理这个客户,这就是最高优先级(HPF)调度算法。但依然也会有极端的问题,万一当天来的全是高级客户,那普通客户不是没有被服务的机会,不把普通客户当人是吗?那我们把优先级改成动态的,如果客户办理业务时间增加,则降低其优先级,如果客户等待时间增加,则升高其优先级。
那有没有兼顾到公平和效率的方式呢?这里介绍一种算法,考虑的还算充分的,多级反馈队列(MFQ)调度算法,它是时间片轮转算法和优先级算法的综合和发展。它的工作方式:
- 银行设置了多个排队(就绪)队列,每个队列都有不同的优先级,各个队列优先级从高到低,同时每个队列执行时间片的长度也不同,优先级越高的时间片越短。
- 新客户(进程)来了,先进入第一级队列的末尾,按先来先服务原则排队等待被叫号(运行)。如果时间片用完客户的业务还没办理完成,则让客户进入到下一级队列的末尾,以此类推,直至客户业务办理完成。
- 当第一级队列没人排队时,就会叫号二级队列的客户。如果客户办理业务过程中,有新的客户加入到较高优先级的队列,那么此时办理中的客户需要停止办理,回到原队列的末尾等待再次叫号,因为要把窗口让给刚进入较高优先级队列的客户。
可以发现,对于要办理短业务的客户来说,可以很快的轮到并解决。对于要办理长业务的客户,一下子解决不了,就可以放到下一个队列,虽然等待的时间稍微变长了,但是轮到自己的办理时间也变长了,也可以接受,不会造成极端的现象,可以说是综合上面几种算法的优点。
文章来源: blog.csdn.net,作者:zhz小白,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/zhouhengzhe/article/details/123320359
- 点赞
- 收藏
- 关注作者
评论(0)