miniconda下pytorch虚拟环境jupyter配置

举报
livingbody 发表于 2022/11/22 00:41:09 2022/11/22
【摘要】 一、环境简介PyTorch是由Facebook人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库,目前被广泛应用于学术界和工业界,而随着Caffe2项目并入Pytorch, Pytorch开始影响到TensorFlow在深度学习应用框架领域的地位。 二、miniconda下pytorch相关环境配置 1.pytorch安装直接参考课件即可,离线安装较好。 ...

一、环境简介

PyTorch是由Facebook人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库,目前被广泛应用于学术界和工业界,而随着Caffe2项目并入Pytorch, Pytorch开始影响到TensorFlow在深度学习应用框架领域的地位。

二、miniconda下pytorch相关环境配置

1.pytorch安装

直接参考课件即可,离线安装较好。

2.jupyter-lab安装

pip install jupyterlab

3.启用

pip install ipykernel 
python -m ipykernel install --user --name pytorch # pytorch 为需要安装jupyter-lab虚拟环境的名称

执行上述命令后,即可安装kernel,在jupyter页面可以选择你需要的kernel。

4.启动

jupyter-lab

5.win下默认环境设置

原先参考: 如何修改 Conda 默认启动的 Python 环境 | MakeOptim [工具 - 如何修改 Conda 默认启动的 Python 环境 | MakeOptim
https://makeoptim.com/tool/conda-default-python-env](工具 - 如何修改 Conda 默认启动的 Python 环境 | MakeOptim
https://makeoptim.com/tool/conda-default-python-env) ,结果发现这个什么都好,win下的配置是错误的。

正确的做法是修改文档下 WindowsPowerShell 的 profile.ps1

例如我的路径: D:\我的资料库\Documents\WindowsPowerShell\profile.ps1

#region conda initialize
# !! Contents within this block are managed by 'conda init' !!
(& "C:\miniconda3\Scripts\conda.exe" "shell.powershell" "hook"  ) | Out-String | Invoke-Expression
#endregion
conda activate pytorch

在最末尾添加activate命令即可。

三、PyTorch基础知识

1.张量

几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量,矩阵就是二阶张量。

2.操作

2.1 加法

import torch
# 方式1
y = torch.rand(4, 3) 
print(x + y)

# 方式2
print(torch.add(x, y))

# 方式3 in-place,原值修改
y.add_(x) 
print(y)

切记 add_ 有下划线,去掉效果不同。。。。。。

2.2 索引

  • 索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。如果不想修改,可以考虑使用copy()等方法

  • torch.view() 返回的新tensor与源tensor共享内存(其实是同一个tensor),更改其中的一个,另外一个也会跟着改变。(顾名思义,view()仅仅是改变了对这个张量的观察角度)

  • 为为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(), 同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用。推荐的方法是我们先用 clone() 创造一个张量副本然后再使用 torch.view()进行函数维度变换 。

  • . 取值操作 如果我们有一个元素 tensor ,我们可以使用 .item() 来获得这个 value,而不获得其他性质。

2.3 广播机制

  • 当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。

3.自动求导

3.1 Autograd简介

  • PyTorch 中,所有神经网络的核心是 autograd包。autograd包为张量上的所有操作提供了自动求导机制。它是一个在运行时定义 ( define-by-run )的框架,这意味着反向传播是根据代码如何运行来决定的,并且每次迭代可以是不同的。

  • torch.Tensor是这个包的核心类。如果设置它的属性.requires_gradTrue,那么它将会追踪对于该张量的所有操作。当完成计算后可以通过调用.backward(),来自动计算所有的梯度。这个张量的所有梯度将会自动累加到.grad属性。

  • 在 y.backward() 时,如果 y 是标量,则不需要为 backward() 传入任何参数;否则,需要传入一个与 y 同形的Tensor。

  • 要阻止一个张量被跟踪历史,可以调用.detach()方法将其与计算历史分离,并阻止它未来的计算记录被跟踪。为了防止跟踪历史记录(和使用内存),可以将代码块包装在 with torch.no_grad():中。在评估模型时特别有用,因为模型可能具有 requires_grad = True 的可训练的参数,但是我们不需要在此过程中对他们进行梯度计算。

  • Tensor Function互相连接生成了一个无环图 (acyclic graph),它编码了完整的计算历史。每个张量都有一个.grad_fn属性,该属性引用了创建Tensor 自身的Function。

3.2 梯度

现在开始进行反向传播,因为out 是一个标量,因此out.backward()out.backward(torch.tensor(1.)) 等价。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。