flask sqlalchemy使用简述

举报
芥末拌个饭吧 发表于 2022/11/10 14:36:46 2022/11/10
【摘要】 说到面向对象,大家都不陌生。关系型数据库也是后端日常用来存储数据的,但数据库是关系型的,因此,ORM通过对象模型和数据库的关系模型之间建立映射,我们就能像操作对象一样来操作数据库。 ORM的优点主要是面向对象编程,不需写原生SQL,用操作对象的方式访问数据。当然,缺点就是当遇到复杂的操作时,ORM就不那么好写了,还有就是加了一层映射,执行效率低于原生sql。

前言

说到面向对象,大家都不陌生。关系型数据库也是后端日常用来存储数据的,但数据库是关系型的,因此,ORM通过对象模型和数据库的关系模型之间建立映射,我们就能像操作对象一样来操作数据库。 ORM的优点主要是面向对象编程,不需写原生SQL,用操作对象的方式访问数据。当然,缺点就是当遇到复杂的操作时,ORM就不那么好写了,还有就是加了一层映射,执行效率低于原生sql。不过,对于大部分项目来说,这些缺点都是可以接受的。牺牲的性能可以接受;有复杂操作时,实现就用原生SQL,ORM执行罢了。

flask sqlalchemy的配置使用

在python中,常用的ORM工具就是sqlalchemy了。下面就以一个简单的flask例子来说明吧。

  1. 首先,写一个最简单的flask项目,代码如下:
from flask import Flask

app = Flask(__name__)


@app.route('/')
def orm_test():
    return "hello"
  1. 接下来我们导入ORM配置,添加如下代码:
from flask_sqlalchemy import SQLAlchemy

def orm_config():
    url = "mysql+mysqlconnector://{user}:{pwd}@{host}:{port}/{db_name}?charset=utf8"
    orm_conf = {
        'SQLALCHEMY_DATABASE_URI': url
    }
    return orm_conf

# ORM 设置
app.config.from_mapping(orm_config)
db = SQLAlchemy(app)

这样我们就将ORM配置OK了。

  1. 然后我们新增一个表table1的model
# model表名
class Table1(db.Model):
    # 表名
    __tablename__ = "table1"

    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')

以上配置这是在数据源只有一个库的时候,但很多时候我们还需要访问别的库,这时需要在ORM配置和model上做一些设置。

ORM配置中需要用到SQLALCHEMY_BINDS来添加数据库, model中__bind_key__来指定数据库了。具体修改如下:

3.1 修改ORM配置:

def orm_config():
    url = "mysql+mysqlconnector://{user}:{pwd}@{host}:{port}/{db_name}?charset=utf8"
    # 指定的别库
    other_url = "mysql+mysqlconnector://{user1}:{pwd1}@{host1}:{port1}/{db_name1}?charset=utf8"
    orm_conf = {
        'SQLALCHEMY_DATABASE_URI': url,
        # 添加别库
        "SQLALCHEMY_BINDS":{
                "other_db":other_url
            },
    }
    return orm_conf

3.2 表model指定库:

class Table2(db.Model):
    # 指定别库
    __bind_key__ = 'other_db'
    __tablename__ = "table2"
    
    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')
  1. 最后,我们在接口中使用下ORM。
@app.route('/')
def orm_test():
    # 查询table1数据
    rows = Table1.query.filter(Table1.id<5)
    res = []
    for row in rows:
        dict = {
            "id": row.id,
            "col": row.col
        }
        res.append(dict)
    return "hhh"

当我们遇到复杂操作,不知道ORM语法该怎么写时,还可以直接用原生sql + ORM session execute的方式执行,示例如下:

sql = "select count(*) as cnt from table1 group by col"
rows = db.session.execute(sql)

以上例子我们是查询table1表的id<5的数据。完整代码如下:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy


app = Flask(__name__)


def orm_config():
    url = "mysql+mysqlconnector://{user}:{pwd}@{host}:{port}/{db_name}?charset=utf8"
    other_url = "mysql+mysqlconnector://{user1}:{pwd1}@{host1}:{port1}/{db_name1}?charset=utf8"
    orm_conf = {
        'SQLALCHEMY_DATABASE_URI': url,
        "SQLALCHEMY_BINDS":{
                "other_db":other_url
            },
    }
    return orm_conf



# ORM 设置
app.config.from_mapping(orm_config)
db = SQLAlchemy(app)

# model表名
class Table1(db.Model):
    # 表名
    __tablename__ = "table1"

    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')
    
class Table2(db.Model):
    # 指定库
    __bind_key__ = 'other_db'
    __tablename__ = "table2"
    
    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')


@app.route('/')
def orm_test():
    # 查询table1数据
    rows = Table1.query.filter(Table1.id<5)
    res = []
    for row in rows:
        dict = {
            "id": row.id,
            "col": row.col
        }
        res.append(dict)
    return "hhh"


if __name__ =="__main__":
    app.run()

sqlalchemy的增删改查

刚开始接触sqlalchemy时,对于语法不熟悉,写代码也是比较痛苦的。这里总结下sqlalchemy常用的语法吧。

查询数据

# 查询id<5的数据
q = Table1.query.filter(Table1.id<5)
# 查询过滤用 and、or
from sqlalchemy import and_, or_
q = Table1.query.filter(and_(Table1.id<5, Table1.col=='掘金'))
q = Table1.query.filter(or_(Table1.id<5, Table1.col=='掘金'))
# 查询过滤用in(语法:model.{字段名}.in_({列表}))
q = Table1.query.filter(Table1.id.in_([1,2,3]))
# 连表查询
q = Table1.query.join(Table2, Table2.id==Table1.id) \
                   .filter(Table1.id<5)
                 
# 解析数据
res = {'data': [dict(i) for i in q]}
# 查询数据count
count = q.count()

增加数据

row = Table1(id=1, col='掘金')
db.session.add(row)
db.seesion.commit()

修改数据

 row = Table1.query.filter(Table1.id<5)
 update_data = {"col": "掘金"}
 row.update(update_data)
 db.session.commit()

删除数据

row = Table1.query.filter(Table1.id<5)
row.delete()
db.session.commit()

备注: 增删改都要commit()

总结

以上就是对sqlalchemy的简单使用及常用操作了。我们在工程代码中使用sqlalchemy时,在配置时记得根据实际情况添加相关配置参数,比如连接池的数量、自动回收连接的秒数等等。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。