Java高效找出两个大数据量List集合中的不同元素

举报
共饮一杯无 发表于 2022/11/09 10:31:55 2022/11/09
【摘要】 本文将带你了解如何快速的找出两个相似度非常高的List集合里的不同元素。主要通过Java API、List集合双层遍历比较不同、借助Map集合查找三种方式,以及他们之间的执行效率情况,话不多说,开搞!集合初始化方法: /** * 制造任意个元素的的List集合 * @param size List集合的size * @return List<String> ...

本文将带你了解如何快速的找出两个相似度非常高的List集合里的不同元素。主要通过Java API、List集合双层遍历比较不同、借助Map集合查找三种方式,以及他们之间的执行效率情况,话不多说,开搞!
集合初始化方法:

    /**
     * 制造任意个元素的的List集合
     * @param size List集合的size
     * @return List<String>
     */
    private static List<String> dataList(int size) {
        List<String> dataList = new ArrayList<>();
        for (int i = 0; i < size; i++) {
            dataList.add("" + i);
        }
        return dataList;
    }

测试数据为集合A: 1千, 1万, 10万,1百万, 1千万的数据量.

  • 集合B比集合A多初始化六条数据,集合A添加一条特有的数据。
  • 测试数据使用空字符串 + 自然数的方式。

JavaAPI过滤(不推荐)

1千数据量

        List<String> listA = dataList(1000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(1006);
        Long startTime = System.currentTimeMillis();
        // 复制集合A和集合B作为备份
        List<String> listABak = new ArrayList<>(listA);
        List<String> listBBak = new ArrayList<>(listB);
        // 集合B存在,集合A不存在的元素
        listB.removeAll(listA);
        // 集合A存在,集合B不存在的元素
        listA.removeAll(listBBak);
        Long endTime = System.currentTimeMillis();
        List<String> differentList = new ArrayList<>();
        differentList.addAll(listB);
        differentList.addAll(listA);
        System.out.println("集合A和集合B不同的元素:"+differentList);
        Long costTime = endTime-startTime;
        System.out.println("比对耗时:"+costTime+"毫秒。");

耗时:22毫秒
image.png

1万数据量

        List<String> listA = dataList(10000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(10006);
        Long startTime = System.currentTimeMillis();
        // 复制集合A和集合B作为备份
        List<String> listABak = new ArrayList<>(listA);
        List<String> listBBak = new ArrayList<>(listB);
        // 集合B存在,集合A不存在的元素
        listB.removeAll(listA);
        // 集合A存在,集合B不存在的元素
        listA.removeAll(listBBak);
        Long endTime = System.currentTimeMillis();
        List<String> differentList = new ArrayList<>();
        differentList.addAll(listB);
        differentList.addAll(listA);
        System.out.println("集合A和集合B不同的元素:"+differentList);
        Long costTime = endTime-startTime;
        System.out.println("比对耗时:"+costTime+"毫秒。");

耗时:613毫秒
image.png

10万数据量

        List<String> listA = dataList(100000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(100006);
        Long startTime = System.currentTimeMillis();
        // 复制集合A和集合B作为备份
        List<String> listABak = new ArrayList<>(listA);
        List<String> listBBak = new ArrayList<>(listB);
        // 集合B存在,集合A不存在的元素
        listB.removeAll(listA);
        // 集合A存在,集合B不存在的元素
        listA.removeAll(listBBak);
        Long endTime = System.currentTimeMillis();
        List<String> differentList = new ArrayList<>();
        differentList.addAll(listB);
        differentList.addAll(listA);
        System.out.println("集合A和集合B不同的元素:"+differentList);
        Long costTime = endTime-startTime;
        System.out.println("比对耗时:"+costTime+"毫秒。");

image.png
可以看出来十万数据量级别已经比较慢了,需要77秒

100万数据量

emmm估计挺慢,不继续验证了。😂😂😂

为什么在数据量增大的时候,这种方法性能下降的这么明显?
我们不妨来看一下removeAll的源码:

    public boolean removeAll(Collection<?> c) {
        // 先判空,然后执行批量remove
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }

image.png
通过源码我们可以看到,该方法是使用for循环对集合进行遍历
第一层循环需要执行 listA.size()次,里面调用了contains方法来确定集合B是否含有该元素,
再看contains方法的源码:
image.png
可以看到,indexOf方法里又进行了一层遍历.
平均每次遍历要进行list.size() / 2次计算,
假设集合A的元素个数为m,集合B的元素个数为n
我们可以得到结论,运算次数为 m *(n/2)
对于100W数据量来说,假设你的计算机每秒能够执行1千万次运算,也需要13.8个小时才能对比出来。所以大数据量不建议通过此方法
image.png

List集合双层遍历比较不同(不推荐)

该方法实际上就是将removeAll的实现逻辑用自己的方式写出来,所以执行效率,运行结果和上一种方法没什么区别,这里只贴代码出来,不再赘述。

private static void doubleFor() {
        List<String> listA = dataList(1000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(1006);
        System.out.println("数量级为 " + listA.size() + "集合的不同元素为");
        List<String> differentList = new ArrayList<>();
        long startTime = System.currentTimeMillis();
        for (String str : listB) {
            if (!listA.contains(str)) {
                differentList.add(str);
            }
        }
        for (String str : listA) {
            if (!listB.contains(str)) {
                differentList.add(str);
            }
        }
        long endTime = System.currentTimeMillis();
        System.out.println("集合A和集合B不同的元素:"+differentList);
        System.out.println("使用双层遍历方法 比对耗时: " + (endTime - startTime)+"毫秒。");
    }

🎨以上两个方法中我都做了m*n次循环,其实完全没有必要循环这么多次,我们的需求是找出两个List中的不同元素,那么我可以这样考虑:用一个map存放lsit的所有元素,其中的key为lsit1的各个元素,value为该元素出现的次数,接着把list2的所有元素也放到map里,如果已经存在则value加1,最后我们只要取出map里value为1的元素即可,这样我们只需循环m+n次,大大减少了循环的次数。

借助Map集合查找(推荐✅)

以List集合里的元素作为Map的key,元素出现的次数作为Map的Value,那么两个List集合的不同元素在Map集合中value值为1,所对应的键。把所有value值为1的键找出来,我们就得到了两个List集合不同的元素。
代码如下:

    /**
     * 借助Map来获取listA、listB的不同元素集合
     *
     * @param listA 集合A
     * @param listB 集合B
     * @return list<String> 不同元素集合
     */
    public static List<String> getDifferListByMap(List<String> listA, List<String> listB) {
        List<String> differList = new ArrayList<>();
        Map<String, Integer> map = new HashMap<>();
        long beginTime = System.currentTimeMillis();
        for (String strA : listA) {
            map.put(strA, 1);
        }
        for (String strB : listB) {
            Integer value = map.get(strB);
            if (value != null) {
                map.put(strB, ++value);
                continue;
            }
            map.put(strB, 1);
        }

        for (Map.Entry<String, Integer> entry : map.entrySet()) {
            //获取不同元素集合
            if (entry.getValue() == 1) {
                differList.add(entry.getKey());
            }
        }
        long endTime = System.currentTimeMillis();
        System.out.println("集合A和集合B不同的元素:"+differList);
        System.out.println("使用map方式遍历, 对比耗时: " + (endTime - beginTime)+"毫秒。");
        return differList;
    }

1千数据量

        List<String> listA = dataList(1000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(1006);
        getDifferListByMap(listA,listB);

耗时:7毫秒
image.png

1万数据量

        List<String> listA = dataList(10000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(10006);
        getDifferListByMap(listA,listB);

耗时:42毫秒
image.png

10万数据量

        List<String> listA = dataList(100000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(100006);
        getDifferListByMap(listA,listB);

耗时:130毫秒
image.png

100万数据量

        List<String> listA = dataList(1000000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(1000006);
        getDifferListByMap(listA,listB);

耗时:283毫秒
image.png

1000万数据量

        List<String> listA = dataList(10000000);
        //集合A添加一个集合B没有的元素
        listA.add("onlyA10086");
        List<String> listB = dataList(10000006);
        getDifferListByMap(listA,listB);

耗时:6.6秒
image.png
可以看出来这种方法相当高效,千万级数据比对也才用了6.6秒。
使用map集合的方式寻找不同元素,时间增长基本上是线性的,它的时间复杂度为O(m)。
而上面的remove方式和双层循环遍历的时间复杂度为O(m * n)。
所以,选用这种方式带来的性能收益随着集合元素的增长而增长。

优化

上述通过map集合的方式效率很高,有没有可以优化的点呢?

  1. 两个集合如果数量差距较大时,可以把小的在后面添加,这样会减少循环里的判断,性能又有了一定的提升。
  2. 创建map集合的时候直接指定大小,防止再散列。

优化后代码如下:

    /**
     * 找出两个集合中不同的元素
     *
     * @param collmax
     * @param collmin
     * @return
     */
    public static Collection getDifferListByMapPlus(Collection collmax, Collection collmin) {
        //使用LinkedList防止差异过大时,元素拷贝
        Collection csReturn = new LinkedList();
        Collection max = collmax;
        Collection min = collmin;
        long beginTime = System.currentTimeMillis();
        //先比较大小,这样会减少后续map的if判断次数
        if (collmax.size() < collmin.size()) {
            max = collmin;
            min = collmax;
        }
        //直接指定大小,防止再散列
        Map<Object, Integer> map = new HashMap<Object, Integer>(max.size());
        for (Object object : max) {
            map.put(object, 1);
        }
        for (Object object : min) {
            if (map.get(object) == null) {
                csReturn.add(object);
            } else {
                map.put(object, 2);
            }
        }
        for (Map.Entry<Object, Integer> entry : map.entrySet()) {
            if (entry.getValue() == 1) {
                csReturn.add(entry.getKey());
            }
        }
        long endTime = System.currentTimeMillis();
        System.out.println("集合A和集合B不同的元素:"+csReturn);
        System.out.println("使用map方式遍历, 对比耗时: " + (endTime - beginTime)+"毫秒。");
        return csReturn;
    }

找出相同元素

同样找出相同元素可以使用如下代码:

    /**
     * 找出两个集合中相同的元素
     *
     * @param collmax
     * @param collmin
     * @return
     */
    public static Collection getSameListByMap(Collection collmax, Collection collmin) {
        //使用LinkedList防止差异过大时,元素拷贝
        Collection csReturn = new LinkedList();
        Collection max = collmax;
        Collection min = collmin;
        //先比较大小,这样会减少后续map的if判断次数
        if (collmax.size() < collmin.size()) {
            max = collmin;
            min = collmax;
        }
        //直接指定大小,防止再散列
        Map<Object, Integer> map = new HashMap<Object, Integer>(max.size());
        for (Object object : max) {
            map.put(object, 1);
        }
        for (Object object : min) {
            if (map.get(object) != null) {
                csReturn.add(object);
            }
        }
        return csReturn;
    }

本文内容到此结束了,
如有收获欢迎点赞👍收藏💖关注✔️,您的鼓励是我最大的动力。
如有错误❌疑问💬欢迎各位大佬指出。
保持热爱,奔赴下一场山海。🏃🏃🏃

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。