【GRNN回归预测】基于matlab有限增量进化广义回归神经网络LIEV-GRNN数据回归预测【含Matlab源码 2132期】

举报
海神之光 发表于 2022/09/25 07:10:17 2022/09/25
【摘要】 一、GRNN模型 GRNN是一种非线性回归的前馈式神经网络。通常是由输入层、模式层、求和层和输出层构成。GRNN算法在运算速度与学习能力上比径向基函数神经网络(radial basis function...

一、GRNN模型

GRNN是一种非线性回归的前馈式神经网络。通常是由输入层、模式层、求和层和输出层构成。GRNN算法在运算速度与学习能力上比径向基函数神经网络(radial basis function, RBF)、反向传播神经网络(back propagation, BP)更强,广泛应用于系统辨识、预测、控制等领域中。

GRNN网络模型如图1所示,含有四部分:
在这里插入图片描述
图1 GRNN模型
(1) 输入层。
输入层作用是将样本数据传送到模式层且不运行计算,输入向量的维数为m。文中通过FA法确定在南京地区使用该模型时输入向量的维数m=7,7种数据分别为平均大气干球温度、最高大气干球温度、最低大气干球温度、平均相对湿度、平均风速、日太阳总辐射和日光伏发电量。输入向量为:

X=[x1,x2,…,xm] (6)

(2) 模式层。
模式层中含有的神经元数目和学习样本的数目相同,均为n,神经元i的传递函数为:
在这里插入图片描述
式中:Xi为神经元i所对应的学习样本;σ为平滑参数,将平滑参数σ代入神经网络训练过程,以Δσ的间距在[σmin,σmax]寻取最优平滑参数。

(3) 求和层。
求和层含有2种类型的神经元,分别表示如下:
在这里插入图片描述
式中:Yi为第i个样本观测值。

(4) 输出层。
在输出层进行如下计算:

Y=SN/SD (10)

式中:Y为具有最大概率的输出变量。

二、部分源代码

clc
clear all
close all
%%

%%
%初始化

steps=1000;
y=zeros(1,steps);
yd=y;
yg=y;
dt=0.05;
t=0;
net1=newgrnn(1,1,0.1);

%%
%%用户设置的超参数

Mse_thresold=0.001;% 开始进化的 MSE 阈值
size_limit=10;% GRNN 隐藏层的最大允许大小

%进化方法输入距离或输出距离

method=‘input_distance’;
%method=‘output_distance’;

%检查是否错误地设置了方法然后将其设置为输入
%distance 作为默认方法
if exist(‘method’,‘var’)==0
method=‘input_distance’;
end

%%
%添加一些噪音
load noise
%%
%%主循环

for k=2:steps

yd(k)=0.2*sin(0.5*t)+0.5*sin(0.3*t);

%  noise(k)=0.05*randn;

sig(k)=var(mat2gray(yd));%%估计西格玛

%%基准系统
y(k+1)=y(k)*y(k-1)*(2.5+y(k-1))/(1+y(k).^2+y(k-1).^2)+2*(exp(-yd(k))-1/(exp(-yd(k))+1))+noise(k);%example3


%%使用您拥有的当前数据预测输出
yg(k+1)=net1([yd(k)]);

%评估您当前的预测

e(k)=mse(yg(k+1),y(k+1));

%% if MSE > threshold (0.001)
if(e(k)>Mse_thresold)
    
    
    %% 始终限于 size_limit 节点
    if k<=size_limit
        %进化 GRNN
        net1=newgrnn(yd(1:k),y(1:k),sig(k));
        
    end

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]卞海红,孙健硕.基于典型气象周的GRNN光伏发电量预测模型[J].电力工程技术. 2021,40(05)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/126961482

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。