python3 高斯函数

举报
指剑 发表于 2022/09/02 23:23:27 2022/09/02
【摘要】 1.涉及公式 1.1 高斯分布公式 概率密度函数 1.2 二项分布公式 换句话说,一枚公平的硬币有正面结果的概率(正面)p = 0.5。如果你掷硬币 20 次,平均值为 20 * 0.5 ...

1.涉及公式

1.1 高斯分布公式

概率密度函数

在这里插入图片描述

1.2 二项分布公式

在这里插入图片描述

换句话说,一枚公平的硬币有正面结果的概率(正面)p = 0.5。如果你掷硬币 20 次,平均值为 20 * 0.5 = 10;你会期望得到10个正面

1.3 方差

继续以硬币为例,n 是投掷硬币的次数,p 是正面朝上的概率

1.4 标准差

在这里插入图片描述

换句话说,标准差是方差的平方根。

1.5 概率密度函数

在这里插入图片描述

2.编写高斯类

import math
import matplotlib.pyplot as plt

class Gaussian():
    """ 高斯分布类,用于计算和可视化高斯分布.

    Attributes:
        均值(float),表示分布的均值。stdev(float)表示分布数据的标准偏差。_ list(float列表):从数据文件中提取的浮点列表

    """
    def __init__(self, mu = 0, sigma = 1):

        self.mean = mu
        self.stdev = sigma
        self.data = []
    def calculate_mean(self):

        """函数计算数据集的平均值.

        Args: 
            None

        Returns: 
            float: mean of the data set

        """

        avg = 1.0 * sum(self.data) / len(self.data)

        self.mean = avg

        return self.mean
    def calculate_stdev(self, sample=True):

        """函数计算数据集的标准偏差.

        Args: 
            sample (bool): 数据是代表样本还是总体

        Returns: 
            float: 数据集的标准偏差

        """

        if sample:
            n = len(self.data) - 1
        else:
            n = len(self.data)

        mean = self.mean

        sigma = 0

        for d in self.data:
            sigma += (d - mean) ** 2

        sigma = math.sqrt(sigma / n)

        self.stdev = sigma

        return self.stdev
    def read_data_file(self, file_name, sample=True):

        """函数从txt文件读入数据。txt文件应该具有每行一个数字(浮动)。这些数字存储在数据属性中。读取文件后,计算平均值和标准偏差

        Args:
            file_name (string): name of a file to read from

        Returns:
            None

        """

        with open(file_name) as file:
            data_list = []
            line = file.readline()
            while line:
                data_list.append(int(line))
                line = file.readline()
        file.close()

        self.data = data_list
        self.mean = self.calculate_mean()
        self.stdev = self.calculate_stdev(sample)
    def plot_histogram(self):
        """函数使用matplotlib pyplot库输出实例变量数据的直方图.

        Args:
            None

        Returns:
            None
        """
        plt.hist(self.data)
        plt.title('Histogram of Data')
        plt.xlabel('data')
        plt.ylabel('count')
    def pdf(self, x):
        """高斯分布的概率密度函数计算器.

        Args:
            x (float): 计算概率密度函数的点
        Returns:
            float: 输出的概率密度函数
        """

        return (1.0 / (self.stdev * math.sqrt(2*math.pi))) * math.exp(-0.5*((x - self.mean) / self.stdev) ** 2)
    def plot_histogram_pdf(self, n_spaces = 50):

        """函数绘制数据的归一化直方图,并沿相同范围绘制概率密度函数

        Args:
            n_spaces (int): number of data points 

        Returns:
            list: x values for the pdf plot
            list: y values for the pdf plot

        """

        mu = self.mean
        sigma = self.stdev

        min_range = min(self.data)
        max_range = max(self.data)

         # 计算x值之间的间隔
        interval = 1.0 * (max_range - min_range) / n_spaces

        x = []
        y = []

        # calculate the x values to visualize
        for i in range(n_spaces):
            tmp = min_range + interval*i
            x.append(tmp)
            y.append(self.pdf(tmp))

        # make the plots
        fig, axes = plt.subplots(2,sharex=True)
        fig.subplots_adjust(hspace=.5)
        axes[0].hist(self.data, density=True)
        axes[0].set_title('Normed Histogram of Data')
        axes[0].set_ylabel('Density')

        axes[1].plot(x, y)
        axes[1].set_title('Normal Distribution for \n Sample Mean and Sample Standard Deviation')
        axes[0].set_ylabel('Density')
        plt.show()

        return x, y

  
 

3.测试高斯类

import unittest

class TestGaussianClass(unittest.TestCase):
    def setUp(self):
        self.gaussian = Gaussian(25, 2)

    def test_initialization(self): 
        self.assertEqual(self.gaussian.mean, 25, 'incorrect mean')
        self.assertEqual(self.gaussian.stdev, 2, 'incorrect standard deviation')

    def test_pdf(self):
        self.assertEqual(round(self.gaussian.pdf(25), 5), 0.19947,\
         'pdf function does not give expected result') 

    def test_meancalculation(self):
        self.gaussian.read_data_file('numbers.txt', True)
        self.assertEqual(self.gaussian.calculate_mean(),\
         sum(self.gaussian.data) / float(len(self.gaussian.data)), 'calculated mean not as expected')

    def test_stdevcalculation(self):
        self.gaussian.read_data_file('numbers.txt', True)
        self.assertEqual(round(self.gaussian.stdev, 2), 92.87, 'sample standard deviation incorrect')
        self.gaussian.read_data_file('numbers.txt', False)
        self.assertEqual(round(self.gaussian.stdev, 2), 88.55, 'population standard deviation incorrect')
                
tests = TestGaussianClass()

tests_loaded = unittest.TestLoader().loadTestsFromModule(tests)

unittest.TextTestRunner().run(tests_loaded)

  
 

文章来源: blog.csdn.net,作者:指剑,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/fly1574/article/details/126438008

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。