【Pytorch】torch. bmm()
【摘要】 @TOC 简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 本文仅记录自己感兴趣的内容 torch.bmm() 语法to...
@TOC
简介
Hello!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
唯有努力💪
本文仅记录自己感兴趣的内容
torch.bmm()
语法
torch.bmm(input, mat2, *, out=None) → Tensor
作用
执行存储在 input 和 mat2 中的矩阵的批量矩阵乘积
input 和 mat2 必须是 3-D 张量,每个张量都包含相同数量的矩阵
如果 input 是 一个 张量,mat2 是 一个 张量
out 将是 一个 张量
此功能不广播。 对于广播矩阵产品,请参阅 torch.matmul()。
举例
input = torch.randn(10, 3, 4)
mat2 = torch.randn(10, 4, 5)
res = torch.bmm(input, mat2)
print(res.size())
mm,bmm和matmul的区别
参考:https://blog.csdn.net/qq_40589781/article/details/104223130
参考
- https://pytorch.org/docs/stable/generated/torch.bmm.html#torch.bmm
- https://blog.csdn.net/qq_40589781/article/details/104223130
结语
文章仅作为个人学习笔记记录,记录从0到1的一个过程
希望对您有一点点帮助,如有错误欢迎小伙伴指正
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)