零基础学Python--机器学习(三):数据集及特征工程介绍

举报
是Dream呀 发表于 2022/08/14 23:35:29 2022/08/14
【摘要】 本文目录: 一、数据集1.可用数据集1.1Scikit-learn工具介绍1.2安装1.3Scikit-learn包含的内容 2.sklearn数据集2.1scikit-learn数据集...

在这里插入图片描述

📢📢📢📣📣📣
🌻🌻🌻Hello,大家好我叫是Dream呀,一个有趣的Python博主,多多关照😜😜😜
🏅🏅🏅作者简介:Python领域优质创作者🏆 CSDN年度博客之星🏆 阿里云专家博主🏆 华为云享专家🏆 51CTO专家博主🏆
💕入门须知:这片乐园从不缺乏天才,努力才是你的最终入场券!🚀🚀🚀
💓最后,愿我们都能在看不到的地方闪闪发光,一起加油进步🍺🍺🍺
🍉🍉🍉一万次悲伤,依然会有Dream,我一直在最温暖的地方等你~🌈🌈🌈
🌟🌟🌟✨✨✨

前言:
❤️本文选自:零基础学Python】本课程是针对Python入门&进阶打造的一全套课程,在这里,我将会一 一更新Python基础语法、Python爬虫、Web开发、 Django框架、Flask框架以及人工智能相关知识,帮助你成为Python大神,如果你喜欢的话就抓紧收藏订阅起来吧~💘💘💘

在这里插入图片描述

一、数据集

1.可用数据集

在这里插入图片描述

  • 公司内部 百度
  • 数据接口 花钱
  • 学习阶段可用的数据集:1.sklearn, 2.kaggle, 3.UCI

Kaggle网址:https://www.kaggle.com/datasets

UCI数据集网址: http://archive.ics.uci.edu/ml/

scikit-learn网址:http://scikit-learn.org/stable/datasets/index.html#datasets

1.1Scikit-learn工具介绍

在这里插入图片描述

  • Python语言的机器学习工具
  • Scikit-learn包括许多知名的机器学习算法的实现
  • Scikit-learn文档完善,容易上手,丰富的API
  • 目前稳定版本0.19.1

1.2安装

pip3 install Scikit-learn==0.19.1

  
 
  • 1

在这里插入图片描述
安装好之后可以通过以下命令查看是否安装成功

import sklearn

  
 
  • 1

注:安装scikit-learn需要Numpy, Scipy等库

1.3Scikit-learn包含的内容

  • 分类、聚类、回归
  • 特征工程
  • 模型选择、调优

2.sklearn数据集

2.1scikit-learn数据集API介绍

sklearn.datasets:

  • 加载获取流行数据集
  • datasets.load_*(): 获取小规模数据集,数据包含在datasets里
  • datasets.fetch_*(data_home=None) 获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/

2.2sklearn小数据集

sklearn.datasets.load_iris()
加载并返回鸢尾花数据集
在这里插入图片描述
sklearn.datasets.load_boston()
加载并返回波士顿房价数据集
在这里插入图片描述

2.3sklearn大数据集

sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)
subset:‘train’或者’test’,‘all’,可选,选择要加载的数据集。
训练集的“训练”,测试集的“测试”,两者的“全部”

2.4sklearn数据集的使用

以鸢尾花数据集为例:
在这里插入图片描述
sklearn数据集返回值介绍
load和fetch返回的数据类型datasets.base.Bunch(字典格式)
data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
DESCR:数据描述
feature_names:特征名,新闻数据,手写数字、回归数据集没有
target_names:标签名

from sklearn.datasets import load_iris
# 获取鸢尾花数据集
iris = load_iris()
print("鸢尾花数据集的返回值:\n", iris)
# 返回值是一个继承自字典的Bench
print("鸢尾花的特征值:\n", iris["data"])
print("鸢尾花的目标值:\n", iris.target)
print("鸢尾花特征的名字:\n", iris.feature_names)
print("鸢尾花目标值的名字:\n", iris.target_names)
print("鸢尾花的描述:\n", iris.DESCR)

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述
思考:拿到的数据是否全部都用来训练一个模型?

3.数据集的划分

机器学习一般的数据集会划分为两个部分:

  • 训练数据:用于训练,构建模型
  • 测试数据:在模型检验时使用,用于评估模型是否有效

划分比例:

  • 训练集:70% 80% 75%
  • 测试集:30% 20% 30%(测试集 20%~30%)

数据集划分api
sklearn.model_selection.train_test_split(arrays, *options)

  • x 数据集的特征值
  • y 数据集的标签值
  • test_size 测试集的大小,一般为float
  • random_state 随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。
  • return 测试集特征训练集特征值值,训练标签,测试标签(默认随机取)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split


def datasets_demo():
    """
    对鸢尾花数据集的演示
    :return: None
    """
    # 1、获取鸢尾花数据集
    iris = load_iris()
    print("鸢尾花数据集的返回值:\n", iris)
    # 返回值是一个继承自字典的Bench
    print("鸢尾花的特征值:\n", iris["data"])
    print("鸢尾花的目标值:\n", iris.target)
    print("鸢尾花特征的名字:\n", iris.feature_names)
    print("鸢尾花目标值的名字:\n", iris.target_names)
    print("鸢尾花的描述:\n", iris.DESCR)

    # 2、对鸢尾花数据集进行分割
    # 训练集的特征值x_train 测试集的特征值x_test 训练集的目标值y_train 测试集的目标值y_test
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
    print("x_train:\n", x_train.shape)
    # 随机数种子
    x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6)
    x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6)
    print("如果随机数种子不一致:\n", x_train == x_train1)
    print("如果随机数种子一致:\n", x_train1 == x_train2)

    return None

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

在这里插入图片描述

二、特征工程介绍

用的是同一个算法,结果为什么会不同呐,这就是我们要说的特征工程的意义。
在这里插入图片描述

1.为什么需要特征工程(Feature Engineering)

机器学习领域的大神Andrew Ng(吴恩达)老师说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied machine learning” is basically feature engineering. ”

注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

2.什么是特征工程

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
意义:会直接影响机器学习的效果

3.特征工程的位置与数据处理的比较

在这里插入图片描述
pandas:一个数据读取非常方便以及基本的处理格式的工具(数据清洗和清理)
sklearn:对于特征的处理提供了强大的接口(特征工程)
特征工程包含内容

  • 特征抽取
  • 特征预处理
  • 特征降维

【系列好文推荐】

🎯🎯🎯
零基础学Python 开篇–全套学习路线
零基础学Python–Web开发(七):登录实现及功能测试
零基础学Python 机器学习实战——疫情数据分析与预测实战

🎯🎯🎯

欢迎订阅本专栏: 零基础学Python 系列课程是针对Python入门&进阶打造的一全套课程,在这里,我将会一 一更新Python基础语法、Python爬虫、Web开发、 Django框架、Flask框架以及人工智能相关知识,帮助你成为Python大神,如果你喜欢的话就抓紧收藏订阅起来吧~💘💘💘
💕💕💕 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!✨ ✨ ✨
🍻🍻🍻如果你喜欢的话,就不要吝惜你的一键三连了~
在这里插入图片描述
在这里插入图片描述
⬇️⬇️ ⬇️ 商务合作|交流学习|粉丝福利|Python全套资料⬇️ ⬇️ ⬇️ 欢迎联系~

文章来源: xuyipeng.blog.csdn.net,作者:是Dream呀,版权归原作者所有,如需转载,请联系作者。

原文链接:xuyipeng.blog.csdn.net/article/details/126185675

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。