数学建模暑期集训9:灰色关联分析
【摘要】
本专栏第23篇数学建模学习笔记(二十三)灰色关联分析记录了灰色关联分析的一些基本知识。本篇内容对数学原理不作赘述,对matlab程序进行一定的补充。
灰色关联分析是国内学者提出的分析方法,适用于样本量比...
本专栏第23篇数学建模学习笔记(二十三)灰色关联分析记录了灰色关联分析的一些基本知识。本篇内容对数学原理不作赘述,对matlab程序进行一定的补充。
灰色关联分析是国内学者提出的分析方法,适用于样本量比较少的情况。样本量多的情况还是使用一般方法,例如多元回归等…
matlab代码:
所有指标均正向化:
clear;clc
load gdp.mat % 导入数据 一个6*4的矩阵
Mean = mean(gdp); % 求出每一列的均值以供后续的数据预处理
gdp = gdp ./ repmat(Mean,size(gdp,1),1); %size(gdp,1)=6, repmat(Mean,6,1)可以将矩阵进行复制,复制为和gdp同等大小,然后使用点除(对应元素相除),这些在第一讲层次分析法都讲过
disp('预处理后的矩阵为:'); disp(gdp)
Y = gdp(:,1); % 母序列
X = gdp(:,2:end); % 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2))) % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y)
a = min(min(absX0_Xi)) % 计算两级最小差a
b = max(max(absX0_Xi)) % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi + rho*b) % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
所有指标未正向化:
clear;clc
load data_water_quality.mat
%% 判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']); %1
if Judge == 1
Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
disp('请输入需要处理的这些列的指 标类型(1:极小型, 2:中间型, 3:区间型) ')
Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3]
% 注意,Position和Type是两个同维度的行向量
for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
% 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素
% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
end
disp('正向化后的矩阵 X = ')
disp(X)
end
%% 对正向化后的矩阵进行预处理
Mean = mean(X); % 求出每一列的均值以供后续的数据预处理
Z = X ./ repmat(Mean,size(X,1),1);
disp('预处理后的矩阵为:'); disp(Z)
%% 构造母序列和子序列
Y = max(Z,[],2); % 母序列为虚拟的,用每一行的最大值构成的列向量表示母序列
X = Z; % 子序列就是预处理后的数据矩阵
%% 计算得分
```java
absX0_Xi = abs(X - repmat(Y,1,size(X,2))) % 计算|X0-Xi|矩阵
a = min(min(absX0_Xi)) % 计算两级最小差a
b = max(max(absX0_Xi)) % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi + rho*b) % 计算子序列中各个指标与母序列的关联系数
weight = mean(gamma) / sum(mean(gamma)); % 利用子序列中各个指标的灰色关联度计算权重
score = sum(X .* repmat(weight,size(X,1),1),2); % 未归一化的得分
stand_S = score / sum(score); % 归一化后的得分
[sorted_S,index] = sort(stand_S ,'descend') % 进行排序
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
里面有些相关自定义函数可参见
数学建模暑期集训7:TOPSIS法(优劣解距离法)
文章来源: zstar.blog.csdn.net,作者:zstar-_,版权归原作者所有,如需转载,请联系作者。
原文链接:zstar.blog.csdn.net/article/details/118902402
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)