数学建模学习笔记(五)K-means聚类算法
【摘要】
K-means聚类算法思路非常易懂 算法描述: 1、假定我们要对N个样本观测做聚类,要求聚为K类,首先选择K个点作为初始中心点; 2、接下来,按照距离初始中心点最小的原则,把所有观测分到各中心点所在的类中...
K-means聚类算法思路非常易懂
算法描述:
1、假定我们要对N个样本观测做聚类,要求聚为K类,首先选择K个点作为初始中心点;
2、接下来,按照距离初始中心点最小的原则,把所有观测分到各中心点所在的类中;
3、每类中有若干个观测,计算K个类中所有样本点的均值,作为第二次迭代的K个中心点;
4、然后根据这个中心重复第2、3步,直到收敛(中心点不再改变或达到指定的迭代次数),聚类过程结束。
特点需要已知一些点的具体坐标(x,y),无监督学习算法
若未知k(分成几类),可根据“肘部法则”确定
matlab代码:
function [Idx, Center] = K_means(X, xstart)
% K-means聚类
% Idx是数据点属于哪个类的标记,Center是每个类的中心位置
% X是全部二维数据点,xstart是类的初始中心位置
len = length(X); %X中的数据点个数
Idx = zeros(len, 1); %每个数据点的Id,即属于哪个类
C1 = xstart(1,:); %第1类的中心位置
C2 = xstart(2,:); %第2类的中心位置
C3 = xstart(3,:); %第3类的中心位置
for i_for = 1:100
%为避免循环运行时间过长,通常设置一个循环次数
%或相邻两次聚类中心位置调整幅度小于某阈值则停止
%更新数据点属于哪个类
for i = 1:len
x_temp = X(i,:); %提取出单个数据点
d1 = norm(x_temp - C1); %与第1个类的距离
d2 = norm(x_temp - C2); %与第2个类的距离
d3 = norm(x_temp - C3); %与第3个类的距离
d = [d1;d2;d3];
[~, id] = min(d); %离哪个类最近则属于那个类
Idx(i) = id;
end
%更新类的中心位置
L1 = X(Idx == 1,:); %属于第1类的数据点
L2 = X(Idx == 2,:); %属于第2类的数据点
L3 = X(Idx == 3,:); %属于第3类的数据点
C1 = mean(L1); %更新第1类的中心位置
C2 = mean(L2); %更新第2类的中心位置
C3 = mean(L3); %更新第3类的中心位置
end
Center = [C1; C2; C3]; %类的中心位置
%演示数据
%% 1 random sample
%随机生成三组数据
a = rand(30,2) * 2;
b = rand(30,2) * 5;
c = rand(30,2) * 10;
figure(1);
subplot(2,2,1);
plot(a(:,1), a(:,2), 'r.'); hold on
plot(b(:,1), b(:,2), 'g*');
plot(c(:,1), c(:,2), 'bx'); hold off
grid on;
title('raw data');
%% 2 K-means cluster
X = [a; b; c]; %需要聚类的数据点
xstart = [2 2; 5 5; 8 8]; %初始聚类中心
subplot(2,2,2);
plot(X(:,1), X(:,2), 'kx'); hold on
plot(xstart(:,1), xstart(:,2), 'r*'); hold off
grid on;
title('raw data center');
[Idx, Center] = K_means(X, xstart);
subplot(2,2,4);
plot(X(Idx==1,1), X(Idx==1,2), 'kx'); hold on
plot(X(Idx==2,1), X(Idx==2,2), 'gx');
plot(X(Idx==3,1), X(Idx==3,2), 'bx');
plot(Center(:,1), Center(:,2), 'r*'); hold off
grid on;
title('K-means cluster result');
disp('xstart = ');
disp(xstart);
disp('Center = ');
disp(Center);
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
文章来源: zstar.blog.csdn.net,作者:zstar-_,版权归原作者所有,如需转载,请联系作者。
原文链接:zstar.blog.csdn.net/article/details/112849176
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)