【数据挖掘】任务5:K-means/DBSCAN聚类:双层正方形
【摘要】
要求
编程如下数据聚类:双层正方形
导库与全局设置
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster i...
要求
编程如下数据聚类:双层正方形
导库与全局设置
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans, DBSCAN
- 1
- 2
- 3
plt.rcParams['font.sans-serif'] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
- 1
- 2
生成双层正方形数据
a = np.arange(1, 10, 0.01)
b = np.arange(3, 8, 0.01)
w = np.zeros((5600, 3))
# 外层正方形点
w[:900, 0] = a
w[:900, 1] = 1
w[900:1800, 0] = 1
w[900:1800, 1] = a
w[1800:2700, 0] = a
w[1800:2700, 1] = 10
w[2700:3600, 0] = 10
w[2700:3600, 1] = a
# 内层正方形点
w[3600:4100, 0] = b
w[3600:4100, 1] = 3
w[4100:4600, 0] = 3
w[4100:4600, 1] = b
w[4600:5100, 0] = b
w[4600:5100, 1] = 8
w[5100:, 0] = 8
w[5100:, 1] = b
w[3600:, 2] = 1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
K-Means 聚类
参数说明
n_clusters:聚类个数
random_state:控制参数随机性
cluster = KMeans(n_clusters=2, random_state=0)
y = cluster.fit_predict(w)
- 1
- 2
colors = ['black', 'red']
plt.figure(figsize=(15, 15))
plt.subplot(2, 2, 1)
for i in range(len(w)):
plt.scatter(w[i][0], w[i][1], color=colors[int(w[i][2])])
plt.title("原始数据")
plt.subplot(2, 2, 2)
for i in range(len(y)):
plt.scatter(w[i][0], w[i][1], color=colors[y[i]])
plt.title("聚类后数据")
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
DBSCAN 聚类
参数说明
eps:ϵ-邻域的距离阈值,和样本距离超过ϵ的样本点不在ϵ-邻域内,默认值是0.5。
min_samples:形成高密度区域的最小点数。作为核心点的话邻域(即以其为圆心,eps为半径的圆,含圆上的点)中的最小样本数(包括点本身)。
若y=-1,则为异常点。
由于DBSCAN生成的类别不确定,因此定义一个函数用来筛选出符合指定类别的最合适的参数。
合适的标准是异常点个数最少。
# 筛选参数
def search_best_parameter(N_clusters, X):
min_outliners = 999
best_eps = 0
best_min_samples = 0
# 迭代不同的eps值
for eps in np.arange(0.001, 1, 0.05):
# 迭代不同的min_samples值
for min_samples in range(2, 10):
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
# 模型拟合
y = dbscan.fit_predict(X)
# 统计各参数组合下的聚类个数(-1表示异常点)
if len(np.argwhere(y == -1)) == 0:
n_clusters = len(np.unique(y))
else:
n_clusters = len(np.unique(y)) - 1
# 异常点的个数
outliners = len([i for i in y if i == -1])
if outliners < min_outliners and n_clusters == N_clusters:
min_outliners = outliners
best_eps = eps
best_min_samples = min_samples
return best_eps, best_min_samples
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
eps, min_samples = search_best_parameter(2, w)
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
y = dbscan.fit_predict(w)
- 1
- 2
- 3
colors = ['black', 'red']
plt.figure(figsize=(15, 15))
plt.subplot(2, 2, 1)
for i in range(len(w)):
plt.scatter(w[i][0], w[i][1], color=colors[int(w[i][2])])
plt.title("原始数据")
plt.subplot(2, 2, 2)
for i in range(len(y)):
plt.scatter(w[i][0], w[i][1], color=colors[y[i]])
plt.title("聚类后数据")
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
总结
对于双层正方形数据来说,K-Means聚类方法不适合进行聚类,而采用DBSCAN方法可以取得较好的效果。
文章来源: zstar.blog.csdn.net,作者:zstar-_,版权归原作者所有,如需转载,请联系作者。
原文链接:zstar.blog.csdn.net/article/details/125573637
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)