机器学习(三):多项式回归

举报
川川菜鸟 发表于 2022/08/04 22:46:25 2022/08/04
【摘要】 如果您的数据点显然不适合线性回归(穿过数据点之间的直线),那么多项式回归可能是理想的选择。它的出现就是为了弥补线性回归。 像线性回归一样,多项式回归使用变量 x 和 y 之间的关系来找到绘制数据点线的最...

如果您的数据点显然不适合线性回归(穿过数据点之间的直线),那么多项式回归可能是理想的选择。它的出现就是为了弥补线性回归。

像线性回归一样,多项式回归使用变量 x 和 y 之间的关系来找到绘制数据点线的最佳方法。
在这里插入图片描述

一、案例(numpy实现)

1.1 搭建模型

在下面的例子中,我们注册了 18 辆经过特定收费站的汽车。我们已经记录了汽车的速度和通过时间(小时)。x 轴表示一天中的小时,y 轴表示速度:

import matplotlib.pyplot as plt

x 
  
 
  • 1
  • 2

文章来源: chuanchuan.blog.csdn.net,作者:川川菜鸟,版权归原作者所有,如需转载,请联系作者。

原文链接:chuanchuan.blog.csdn.net/article/details/126057987

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。