机器学习(十五):异常检测之隔离森林算法(IsolationForest)

举报
川川菜鸟 发表于 2022/08/04 23:41:27 2022/08/04
【摘要】 异常值值会影响回归模型和分类模型的准确性,因此检测和删除它们是机器学习过程中的重要一步。在较大的数据集上,检测和去除异常值要困难得多,因此数据科学家经常应用自动异常检测算法(例如隔离森林)来帮助识别和去除...

异常值值会影响回归模型和分类模型的准确性,因此检测和删除它们是机器学习过程中的重要一步。在较大的数据集上,检测和去除异常值要困难得多,因此数据科学家经常应用自动异常检测算法(例如隔离森林)来帮助识别和去除异常值。

顾名思义,隔离森林是一种基于树的异常检测算法。它使用无监督学习方法来检测异常数据点,然后可以将其从训练数据中删除。在移除异常值的数据集上重新训练模型通常会提高性能。

隔离森林(Isolation Forest) 又名孤立森林,是一种从异常点出发,通过指定规则进行划分,根据划分次数进行判断的异常检测方法。由周志华教授等人提出。该算法对较大数据集的异常值处理有着很大效果,同样适合小数据集。

文章来源: chuanchuan.blog.csdn.net,作者:川川菜鸟,版权归原作者所有,如需转载,请联系作者。

原文链接:chuanchuan.blog.csdn.net/article/details/126089096

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。