机器学习(二十):差分进化算法(DE)
本篇文章适合对象:
爱偷懒、算法能力不好、复杂算法不会自学不懂的读者。综合来说,这一篇的解法能非常简单,只要python基础就行。
一、差分进化算法(DE)
1.1 介绍
差分进化算法(Differential Evolution,DE)于1997年由Rainer Storn和Kenneth Price在遗传算法等进化思想的基础上提出的,本质是一种多目标(连续变量)优化算法(MOEAs),用于求解多维空间中整体最优解。DE算法也属于智能优化算法,与启发式算法,如ABC,PSO等类似,都属于启发式的优化算法。差分进化思想来源即是早期提出的遗传算法(GeneticAlgorithm,GA),模拟遗传学中的杂交(crossover)、变异(mutation)、复制(reproduction)来设计遗传算子。
差分进化算法相对于遗传算法而言,相同点都是通过随机生成初始种群,以种群中每个个体的适应度值为选择标准,主要过程也都包括变异、交叉和选择三个步骤。不同之处在于遗传算法是根据适应度值来控制父代杂交,变异后产生的子代被选择的概率值,在最大化问题中适应值大的个体被选择的概率相应也会大一些。而差分进化算法变异向量是由父代差分向量生成,并与父代个体向量交叉生成新个体向量,直接与其父代个体进行选择。显然差分进化算法相对遗传算法的逼近效果更加显著。
最优化方法分为传统优化方法和启发式优化方法两大类。传统优化方法大多利用目标函数的梯度 (或导数)信息实现单可行解的惯序、确定性搜索;启发式优化方法以仿生算法为主,通过启发式搜索策略实现多可行解的并行、随机优化。启发式搜
文章来源: chuanchuan.blog.csdn.net,作者:川川菜鸟,版权归原作者所有,如需转载,请联系作者。
原文链接:chuanchuan.blog.csdn.net/article/details/126110989
- 点赞
- 收藏
- 关注作者
评论(0)