机器学习(十三):支持向量机(SVM)

举报
川川菜鸟 发表于 2022/08/04 22:45:39 2022/08/04
【摘要】 与逻辑回归和决策树等其他分类器相比,SVM 提供了非常高的准确度。它以其处理非线性输入空间的内核技巧而闻名。它用于各种应用,例如人脸检测、入侵检测、电子邮件、新闻文章和网页的分类、基因分类和手写识别。 ...

与逻辑回归和决策树等其他分类器相比,SVM 提供了非常高的准确度。它以其处理非线性输入空间的内核技巧而闻名。它用于各种应用,例如人脸检测、入侵检测、电子邮件、新闻文章和网页的分类、基因分类和手写识别。

一、什么是支持向量机?

1.1 定义

超平面是分割输入变量空间的线。在SVM中

文章来源: chuanchuan.blog.csdn.net,作者:川川菜鸟,版权归原作者所有,如需转载,请联系作者。

原文链接:chuanchuan.blog.csdn.net/article/details/126086866

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。