为什么索引结构默认使用B+Tree,而不是B-Tree,Hash,二叉树,红黑树
为什么索引结构默认使用B+Tree,而不是B-Tree,Hash,二叉树,红黑树?
B-tree: 从两个方面来回答
B+树的磁盘读写代价更低:B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B(B-)树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。
由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。
Hash:
虽然可以快速定位,但是没有顺序,IO复杂度高;
基于Hash表实现,只有Memory存储引擎显式支持哈希索引 ;
适合等值查询,如=、in()、<=>,不支持范围查询 ;
因为不是按照索引值顺序存储的,就不能像B+Tree索引一样利用索引完成排序 ;
Hash索引在查询等值时非常快 ;
因为Hash索引始终索引的所有列的全部内容,所以不支持部分索引列的匹配查找 ;
如果有大量重复键值得情况下,哈希索引的效率会很低,因为存在哈希碰撞问题 。
二叉树: 树的高度不均匀,不能自平衡,查找效率跟数据有关(树的高度),并且IO代价高。
红黑树: 树的高度随着数据量增加而增加,IO代价高。
讲一讲聚簇索引与非聚簇索引?
在 InnoDB 里,索引B+ Tree的叶子节点存储了整行数据的是主键索引,也被称之为聚簇索引,即将数据存储与索引放到了一块,找到索引也就找到了数据。
而索引B+ Tree的叶子节点存储了主键的值的是非主键索引,也被称之为非聚簇索引、二级索引。
聚簇索引与非聚簇索引的区别:
非聚集索引与聚集索引的区别在于非聚集索引的叶子节点不存储表中的数据,而是存储该列对应的主键(行号)
对于InnoDB来说,想要查找数据我们还需要根据主键再去聚集索引中进行查找,这个再根据聚集索引查找数据的过程,我们称为回表。第一次索引一般是顺序IO,回表的操作属于随机IO。需要回表的次数越多,即随机IO次数越多,我们就越倾向于使用全表扫描 。
通常情况下, 主键索引(聚簇索引)查询只会查一次,而非主键索引(非聚簇索引)需要回表查询多次。当然,如果是覆盖索引的话,查一次即可
注意:MyISAM无论主键索引还是二级索引都是非聚簇索引,而InnoDB的主键索引是聚簇索引,二级索引是非聚簇索引。我们自己建的索引基本都是非聚簇索引。
非聚簇索引一定会回表查询吗?
不一定,这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询。一个索引包含(覆盖)所有需要查询字段的值,被称之为"覆盖索引"。
举个简单的例子,假设我们在员工表的年龄上建立了索引,那么当进行select score from student where score > 90的查询时,在索引的叶子节点上,已经包含了score 信息,不会再次进行回表查询。
联合索引是什么?为什么需要注意联合索引中的顺序?
MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。
具体原因为:
MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。
当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,以此类推。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。
- 点赞
- 收藏
- 关注作者
评论(0)