设计模式之单例模式
单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。
这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。
单例模式的实现一般有以下7中。
一、饿汉式(静态变量方式)
将类设置成静态变量,在程序运行时将对象加载到虚拟机,之后通过get方法访问这个对象,保证访问的一直都是同一个类。
/**
* 饿汉式
* 静态变量创建类的对象
*/
public class Singleton {
//私有构造方法
private Singleton() {}
//在成员位置创建该类的对象
private static Singleton instance = new Singleton();
//对外提供静态方法获取该对象
public static Singleton getInstance() {
return instance;
}
}
缺点:instance对象是随着类的加载而创建的。如果该对象足够大的话,而一直没有使用就会造成内存的浪费。
二、 饿汉式(静态代码块方式)
该方式在成员位置声明Singleton类型的静态变量,而对象的创建是在静态代码块中,也是对着类的加载而创建。所以和饿汉式的方式1基本上一样,当然该方式也存在内存浪费问题。
/**
* 恶汉式
* 在静态代码块中创建该类对象
*/
public class Singleton {
//私有构造方法
private Singleton() {}
//在成员位置创建该类的对象
private static Singleton instance;
static {
instance = new Singleton();
}
//对外提供静态方法获取该对象
public static Singleton getInstance() {
return instance;
}
}
三、 懒汉式-方式1(线程不安全)
什么是懒汉式,懒汉式就是类不是程序运行时加载,而是在类使用时加载,下面说线程不安全的单例的例子,在单线程环境没有问题,但在多线程环境会因为多个线程同时进入if语句导致对象被创建多次。
/**
* 懒汉式
* 线程不安全
*/
public class Singleton {
//私有构造方法
private Singleton() {}
//在成员位置创建该类的对象
private static Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}
四、懒汉式-方式2(线程安全)
该方式也实现了懒加载效果,同时又解决了线程安全问题。但是在getInstance()方法上添加了synchronized关键字,导致该方法的执行效果特别低。从上面代码我们可以看出,其实就是在初始化instance的时候才会出现线程安全问题,一旦初始化完成就不存在了。
/**
* 懒汉式
* 线程安全
*/
public class Singleton {
//私有构造方法
private Singleton() {}
//在成员位置创建该类的对象
private static Singleton instance;
//对外提供静态方法获取该对象
public static synchronized Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}
五、懒汉式-方式3(双重检查锁)
再来讨论一下懒汉模式中加锁的问题,对于 getInstance()
方法来说,绝大部分的操作都是读操作,读操作是线程安全的,所以我们没必让每个线程必须持有锁才能调用该方法,我们需要调整加锁的时机。由此也产生了一种新的实现模式:双重检查锁模式
/**
* 双重检查方式
*/
public class Singleton {
//私有构造方法
private Singleton() {}
private static Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实例
if(instance == null) {
synchronized (Singleton.class) {
//抢到锁之后再次判断是否为null
if(instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
双重检查锁模式是一种非常好的单例实现模式,解决了单例、性能、线程安全问题,上面的双重检测锁模式看上去完美无缺,其实是存在问题,在多线程的情况下,可能会出现空指针问题,出现问题的原因是JVM在实例化对象的时候会进行优化和指令重排序操作。
要解决双重检查锁模式带来空指针异常的问题,只需要使用 volatile
关键字, volatile
关键字可以保证可见性和有序性。
/**
* 双重检查方式
*/
public class Singleton {
//私有构造方法
private Singleton() {}
private static volatile Singleton instance;
//对外提供静态方法获取该对象
public static Singleton getInstance() {
//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实际
if(instance == null) {
synchronized (Singleton.class) {
//抢到锁之后再次判断是否为空
if(instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
小结:
添加 volatile
关键字之后的双重检查锁模式是一种比较好的单例实现模式,能够保证在多线程的情况下线程安全也不会有性能问题。
六、懒汉式-方式4(静态内部类方式)
静态内部类单例模式中实例由内部类创建,由于 JVM 在加载外部类的过程中, 是不会加载静态内部类的, 只有内部类的属性/方法被调用时才会被加载, 并初始化其静态属性。静态属性由于被 static
修饰,保证只被实例化一次,并且严格保证实例化顺序。
/**
* 静态内部类方式
*/
public class Singleton {
//私有构造方法
private Singleton() {}
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
//对外提供静态方法获取该对象
public static Singleton getInstance() {
return SingletonHolder.INSTANCE;
}
}
静态内部类单例模式是一种优秀的单例模式,是开源项目中比较常用的一种单例模式。在没有加任何锁的情况下,保证了多线程下的安全,并且没有任何性能影响和空间的浪费。
七、枚举方式
枚举类实现单例模式是极力推荐的单例实现模式,因为枚举类型是线程安全的,并且只会装载一次,设计者充分的利用了枚举的这个特性来实现单例模式,枚举的写法非常简单,而且枚举类型是所用单例实现中唯一一种不会被破坏的单例实现模式。不过基本用的少。
/**
* 枚举方式
*/
public enum Singleton {
INSTANCE;
}
- 点赞
- 收藏
- 关注作者
评论(0)