机器学习实战应用案例100篇(十)-蝙蝠算法从原理到实战应用案例
蝙蝠算法(原理)
1 算法简介
蝙蝠是令人着迷的动物。它们是唯一有翅膀的哺乳动物,它们还有先进的回声定位能力。
据估计,世界上大约有996种不同的哺乳动物,占哺乳动物种类总数的20%。它们的体型范围从微小的大黄蜂蝙蝠(约1.5到2克)到翼展约2米、体重约1公斤的巨型蝙蝠。微蝠的前臂长度一般为 2.2-11 厘米。
大多数蝙蝠在一定程度上使用回声定位。在所有物种中,微蝠是一个著名的例子,因为微蝠广泛使用回声定位,而巨蝠则不使用。
大多数微蝠是食虫动物。微蝠利用一种叫做回声定位的声纳来探测猎物,躲避障碍物,并在黑暗中找到栖息的缝隙。这些蝙蝠发出非常大的声波脉冲并倾听周围物体反弹回来的回声。
根据物种的不同,它们的脉冲在性质上有所不同,并且可以与它们的捕猎策略相关联。大多数蝙蝠使用短的调频信号扫描大约一个八度,而其他蝙蝠更多地使用恒频信号进行回声定位。它们的信号带宽随种类的不同而变化,通常通过使用更多的谐波来增加带宽。
虽然每个脉冲只持续几千分之一秒(大约8到10毫秒),但是它有一个恒定的频率,通常在[25,150] kHz之间。大多数蝙蝠物种的典型频率范围在[25,100] kHz之间,尽管有些蝙蝠物种可以发射高达150千赫的更高频率。
每次超声波爆发通常持续5到20毫秒,微蝠每秒钟会发出大约10到20次这
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/123663494
- 点赞
- 收藏
- 关注作者
评论(0)