Google Earth Engine——1999-2019年墨累全球潮汐湿地变化 v1 数据集

举报
此星光明 发表于 2022/06/24 10:24:27 2022/06/24
【摘要】 ​The Murray Global Tidal Wetland Change Dataset contains maps of the global extent of tidal wetlands and their change. The maps were developed from a three stage classification that sought to (i) e...

The Murray Global Tidal Wetland Change Dataset contains maps of the global extent of tidal wetlands and their change. The maps were developed from a three stage classification that sought to (i) estimate the global distribution of tidal wetlands (defined as either tidal marsh, tidal flat or mangrove ecosystems), (ii) detect their change over the study period, and (iii) estimate the ecosystem type and timing of tidal wetland change events.

The dataset was produced by combining observations from 1,166,385 satellite images acquired by Landsat 5 to 8 with environmental data of variables known to influence the distributions of each ecosystem type, including temperature, slope, and elevation. The image contains bands for a tidal wetland extent product (random forest probability of tidal wetland occurrence) for the start and end time-steps of the study period and a tidal wetland change product over the full study period (loss and gain of tidal wetlands).

Please see the usage notes on the project website. A full description of the methods, validation, and limitations of the data produced by this software is available in the associated scientific paper.

See also UQ/murray/Intertidal/v1_1/global_intertidal for global maps of the distribution of tidal flat ecosystems.

默里全球潮汐湿地变化数据集包含全球潮汐湿地范围及其变化的地图。这些地图是根据三阶段分类开发的,旨在 (i) 估计潮汐湿地(定义为潮汐沼泽、潮滩或红树林生态系统)的全球分布,(ii) 检测它们在研究期间的变化,以及 (iii) ) 估计潮汐湿地变化事件的生态系统类型和时间。

该数据集是通过将 Landsat 5 到 8 获取的 1,166,385 幅卫星图像的观测结果与已知会影响每种生态系统类型分布的变量的环境数据(包括温度、坡度和海拔)相结合而生成的。该图像包含研究期间开始和结束时间步长的潮汐湿地范围产品(潮汐湿地发生的随机森林概率)和整个研究期间的潮汐湿地变化产品的波段(潮汐湿地的损失和增益) .

请参阅项目网站 上的使用说明。相关科学论文中提供了对该软件产生的数据的方法、验证和限制的完整描述。

另请参阅 UQ/murray/Intertidal/v1_1/global_intertidal 了解全球潮滩生态系统分布图。

数据集可用性

1999-01-01T00:00:00Z - 2019-12-31T00:00:00

数据集提供者

默里/JCU

地球引擎

ee.ImageCollection("JCU/Murray/GIC/global_tidal_wetland_change/2019"

分辨率
30 米

波段

姓名 描述
loss

为丢失位置设置为 1,否则被屏蔽。

lossYear

表示损失分析时间步长结束年份的整数(例如,19 = 2017-2019)。

lossType

损失类型

  • 2 - 滩涂
  • 3 - 红树林
  • 5 - 潮汐沼泽
gain

增益位置设置为 1,否则被屏蔽。

gainYear

表示增益分析时间步长结束年份的整数(例如,19 = 2017-2019)。

gainType

增益类型:

  • 2 - 滩涂
  • 3 - 红树林
  • 5 - 潮汐沼泽
twprobabilityStart

第一时间步(1999-2001)总体潮汐湿地类的随机森林协议。0 到 100 之间的整数。

twprobabilityEnd

最后一个时间步长(2017-2019)的总体潮汐湿地类别的随机森林协议。0 到 100 之间的整数。

代码:

var dataset = ee.Image('JCU/Murray/GIC/global_tidal_wetland_change/2019');

Map.setCenter(103.7, 1.3, 12);
Map.setOptions('SATELLITE');

var plasma = [
  '0d0887', '3d049b', '6903a5', '8d0fa1', 'ae2891', 'cb4679', 'df6363',
  'f0844c', 'faa638', 'fbcc27', 'f0f921'
];
Map.addLayer(
    dataset.select('twprobabilityStart'), {palette: plasma, min: 0, max: 100},
    'twprobabilityStart', false, 1);
Map.addLayer(
    dataset.select('twprobabilityEnd'), {palette: plasma, min: 0, max: 100},
    'twprobabilityEnd', false, 1);

var lossPalette = ['FE4A49'];
var gainPalette = ['2AB7CA'];
Map.addLayer(
    dataset.select('loss'), {palette: lossPalette, min: 1, max: 1},
    'Tidal wetland loss', true, 1);
Map.addLayer(
    dataset.select('gain'), {palette: gainPalette, min: 1, max: 1},
    'Tidal wetland gain', true, 1);

var viridis = ['440154', '414487', '2a788e', '22a884', '7ad151', 'fde725'];
Map.addLayer(
    dataset.select('lossYear'), {palette: viridis, min: 4, max: 19},
    'Year of loss', false, 0.9);
Map.addLayer(
    dataset.select('gainYear'), {palette: viridis, min: 4, max: 19},
    'Year of gain', false, 0.9);

// ecosystem type
var classPalette = ['9e9d9d', 'ededed', 'FF9900', '009966', '960000', '006699'];
var classNames =
    ['null', 'null', 'Tidal flat', 'Mangrove', 'null', 'Tidal marsh'];
Map.addLayer(
    dataset.select('lossType'), {palette: classPalette, min: 0, max: 5},
    'Loss type', false, 0.9);
Map.addLayer(
    dataset.select('gainType'), {palette: classPalette, min: 0, max: 5},
    'Gain type', false, 0.9);

Terms of Use

CC-BY-4.0

Citations:

  • Murray, N.J., Worthington, T.A., Bunting, P., Duce, S., Hagger, V., Lovelock, C.E., Lucas, R., Saunders, M.I., Sheaves, M., Spalding, M., Waltham, N.J., Lyons, M.B., 2022. High-resolution mapping of losses and gains of Earth's tidal wetlands. Sciencedoi:10.1126/science.abm9583

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。