Java8中的函数式接口详解(Supplier、Consumer、Predicate、Function)
@FunctionalInterface
函数式接口:有且只有一个抽象方法的接口,称之为函数式接口
@FunctionalInterface注解作用:可以检测接口是否是一个函数式接口
是:编译成功
否:编译失败(接口中没有抽象方法或者抽象方法的个数多于1个)
代码案例@FunctionalInterface
@FunctionalInterface
public interface MyFunctionalInterface {
/**
* 定义一个抽象方法
*/
public abstract void method();
}
public class Demo {
//定义一个方法,参数使用函数式接口MyFunctionalInterface
public static void show(MyFunctionalInterface myInter){
myInter.method();
}
public static void main(String[] args) {
//调用show方法,方法的参数是一个接口,所以可以传递接口的实现类对象
show(new MyFunctionalInterfaceImpl());
//调用show方法,方法的参数是一个接口,所以我们可以传递接口的匿名内部类
show(new MyFunctionalInterface() {
@Override
public void method() {
System.out.println("使用匿名内部类重写接口中的抽象方法");
}
});
//调用show方法,方法的参数是一个函数式接口,所以我们可以Lambda表达式
show(()->{
System.out.println("使用Lambda表达式重写接口中的抽象方法");
});
//简化Lambda表达式
show(()-> System.out.println("使用Lambda表达式重写接口中的抽象方法"));
}
}
输出如下:
使用匿名内部类重写接口中的抽象方法
使用Lambda表达式重写接口中的抽象方法
使用Lambda表达式重写接口中的抽象方法
生产型接口Supplier
java.util.function.Supplier<T> 接口仅包含一个无参的方法:T get() 。用来获取一个泛型参数指定类型的对象数据。由于这是一个函数式接口,这也就意味着对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。
代码案例Supplier
获取一个字符串返回值:
public class Demo01Supplier {
public static void main(String[] args) {
//调用getString方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式
String s = getString(()->{
//生产一个字符串,并返回
return "zjq666";
});
System.out.println(s);
//优化Lambda表达式
String s2 = getString(()->"zjq666");
System.out.println(s2);
}
//定义一个方法,方法的参数传递Supplier<T>接口,泛型执行String,get方法就会返回一个String
public static String getString(Supplier<String> sup){
return sup.get();
}
}
输出如下:
zjq666
zjq666
求数组元素最大值:
public class Demo02Supplier {
//定义一个方法,用于获取int类型数组中元素的最大值,方法的参数传递Supplier接口,泛型使用Integer
public static int getMax(Supplier<Integer> sup){
return sup.get();
}
public static void main(String[] args) {
//定义一个int类型的数组,并赋值
int[] arr = {100,0,-50,880,99,33,-30};
//调用getMax方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式
int maxValue = getMax(()->{
//获取数组的最大值,并返回
//定义一个变量,把数组中的第一个元素赋值给该变量,记录数组中元素的最大值
int max = arr[0];
//遍历数组,获取数组中的其他元素
for (int i : arr) {
//使用其他的元素和最大值比较
if(i>max){
//如果i大于max,则替换max作为最大值
max = i;
}
}
//返回最大值
return max;
});
System.out.println("数组中元素的最大值是:"+maxValue);
}
}
输出如下:
数组中元素的最大值是:880
消费型接口Consumer
java.util.function.Consumer<T> 接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据,其数据类型由泛型决定。
Consumer 接口中包含抽象方法void accept(T t) ,意为消费一个指定泛型的数据。
代码案例Consumer
public class Demo01Consumer {
/**
定义一个方法
方法的参数传递一个字符串的姓名
方法的参数传递Consumer接口,泛型使用String
可以使用Consumer接口消费字符串的姓名
*/
public static void method(String name, Consumer<String> con){
con.accept(name);
}
public static void main(String[] args) {
//调用method方法,传递字符串姓名,方法的另一个参数是Consumer接口,是一个函数式接口,所以可以传递Lambda表达式
method("zjq666",(String name)->{
//对传递的字符串进行消费
//消费方式:直接输出字符串
//System.out.println(name);
//消费方式:把字符串进行反转输出
String reName = new StringBuffer(name).reverse().toString();
System.out.println(reName);
});
}
}
输出如下:
666qjz
如果一个方法的参数和返回值全都是Consumer 类型,那么就可以实现效果:消费数据的时候,首先做一个操作,然后再做一个操作,实现组合。
代码案例Consumer_andThen
public class Demo02AndThen {
//定义一个方法,方法的参数传递一个字符串和两个Consumer接口,Consumer接口的泛型使用字符串
public static void method(String s, Consumer<String> con1 ,Consumer<String> con2){
//con1.accept(s);
//con2.accept(s);
//使用andThen方法,把两个Consumer接口连接到一起,在消费数据
con1.andThen(con2).accept(s);//con1连接con2,先执行con1消费数据,在执行con2消费数据
}
public static void main(String[] args) {
//调用method方法,传递一个字符串,两个Lambda表达式
method("Hello World",
(t)->{
//消费方式:把字符串转换为大写输出
System.out.println(t.toUpperCase());
},
(t)->{
//消费方式:把字符串转换为小写输出
System.out.println(t.toLowerCase());
});
}
}
输出如下:
HELLO WORLD
hello world
判断型接口Predicate
有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用java.util.function.Predicate<T> 接口。
Predicate接口中包含一个抽象方法:
- boolean test(T t):用来对指定数据类型数据进行判断的方法
结果:
符合条件,返回true
不符合条件,返回false
代码案例Predicate
判定字符串长度是否大于5
public class Demo01Predicate {
/**
定义一个方法
参数传递一个String类型的字符串
传递一个Predicate接口,泛型使用String
使用Predicate中的方法test对字符串进行判断,并把判断的结果返回
*/
public static boolean checkString(String s, Predicate<String> pre){
return pre.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abcdef";
//调用checkString方法对字符串进行校验,参数传递字符串和Lambda表达式
/**boolean b = checkString(s,(String str)->{
//对参数传递的字符串进行判断,判断字符串的长度是否大于5,并把判断的结果返回
return str.length()>5;
});*/
//优化Lambda表达式
boolean b = checkString(s,str->str.length()>5);
System.out.println(b);
}
}
输出如下
true
代码案例Predicate_and
Predicate接口中有一个方法and,表示并且关系,也可以用于连接两个判断条件
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> this.test(t) && other.test(t);
}
方法内部的两个判断条件,也是使用&&运算符连接起来的
public class Demo02Predicate_and {
/**
定义一个方法,方法的参数,传递一个字符串
传递两个Predicate接口
一个用于判断字符串的长度是否大于5
一个用于判断字符串中是否包含a
两个条件必须同时满足
*/
public static boolean checkString(String s, Predicate<String> pre1,Predicate<String> pre2){
//return pre1.test(s) && pre2.test(s);
return pre1.and(pre2).test(s);//等价于return pre1.test(s) && pre2.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abcdef";
//调用checkString方法,参数传递字符串和两个Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5
return str.length()>5;
},(String str)->{
//判断字符串中是否包含a
return str.contains("a");
});
System.out.println(b);
}
}
输出如下:
true
代码案例Predicate_or
Predicate接口中有一个方法or,表示或者关系,也可以用于连接两个判断条件
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
方法内部的两个判断条件,也是使用||运算符连接起来的
public class Demo03Predicate_or {
/**
定义一个方法,方法的参数,传递一个字符串
传递两个Predicate接口
一个用于判断字符串的长度是否大于5
一个用于判断字符串中是否包含a
满足一个条件即可
*/
public static boolean checkString(String s, Predicate<String> pre1, Predicate<String> pre2){
//return pre1.test(s) || pre2.test(s);
return pre1.or(pre2).test(s);//等价于return pre1.test(s) || pre2.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "bc";
//调用checkString方法,参数传递字符串和两个Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5
return str.length()>5;
},(String str)->{
//判断字符串中是否包含a
return str.contains("a");
});
System.out.println(b);
}
}
代码案例Predicate_negate
Predicate接口中有一个方法negate,也表示取反的意思
default Predicate<T> negate() {
return (t) -> !test(t);
}
public class Demo04Predicate_negate {
/**
定义一个方法,方法的参数,传递一个字符串
使用Predicate接口判断字符串的长度是否大于5
*/
public static boolean checkString(String s, Predicate<String> pre){
//return !pre.test(s);
return pre.negate().test(s);//等效于return !pre.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abc";
//调用checkString方法,参数传递字符串和Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5,并返回结果
return str.length()>5;
});
System.out.println(b);
}
}
输出:true
类型转换接口Function
java.util.function.Function<T,R>接口用来根据一个类型的数据得到另一个类型的数据,
前者称为前置条件,后者称为后置条件。
Function接口中最主要的抽象方法为:R apply(T t),根据类型T的参数获取类型R的结果。
使用的场景例如:将String类型转换为Integer类型。
代码案例Function
public class Demo01Function {
/**
定义一个方法
方法的参数传递一个字符串类型的整数
方法的参数传递一个Function接口,泛型使用<String,Integer>
使用Function接口中的方法apply,把字符串类型的整数,转换为Integer类型的整数
*/
public static void change(String s, Function<String,Integer> fun){
//Integer in = fun.apply(s);
int in = fun.apply(s);//自动拆箱 Integer->int
System.out.println(in);
}
public static void main(String[] args) {
//定义一个字符串类型的整数
String s = "1234";
//调用change方法,传递字符串类型的整数,和Lambda表达式
change(s,(String str)->{
//把字符串类型的整数,转换为Integer类型的整数返回
return Integer.parseInt(str);
});
//优化Lambda
change(s,str->Integer.parseInt(str));
}
}
代码案例Function_andThen
Function接口中的默认方法andThen:用来进行组合操作
public class Demo02Function_andThen {
/**
定义一个方法
参数串一个字符串类型的整数
参数再传递两个Function接口
一个泛型使用Function<String,Integer>
一个泛型使用Function<Integer,String>
*/
public static void change(String s, Function<String,Integer> fun1,Function<Integer,String> fun2){
String ss = fun1.andThen(fun2).apply(s);
System.out.println(ss);
}
public static void main(String[] args) {
//定义一个字符串类型的整数
String s = "123";
//调用change方法,传递字符串和两个Lambda表达式
change(s,(String str)->{
//把字符串转换为整数+10
return Integer.parseInt(str)+10;
},(Integer i)->{
//把整数转换为字符串
return i+"";
});
//优化Lambda表达式
change(s,str->Integer.parseInt(str)+10,i->i+"");
}
}
- 点赞
- 收藏
- 关注作者
评论(0)