Google Earth Engine(GEE)——计算ndvi的零星植被状况(墨西哥为例)
【摘要】 本文使用Landsat7影像来计算ndvi的零星植被状况并查看影像的温度,这里面要特别注意不同的影像集合中波段名称是不同的,所以建议要认真查看波段,这里再次列举一下本次要用到的影像波段,特别注意去云波段:Resolution30 metersBands TableNameDescriptionMinMaxUnitsWavelengthScaleOffsetSR_B1Band 1 (blue...
本文使用Landsat7影像来计算ndvi的零星植被状况并查看影像的温度,这里面要特别注意不同的影像集合中波段名称是不同的,所以建议要认真查看波段,这里再次列举一下本次要用到的影像波段,特别注意去云波段:
Resolution
30 meters
Bands Table
Name | Description | Min | Max | Units | Wavelength | Scale | Offset |
---|---|---|---|---|---|---|---|
SR_B1 | Band 1 (blue) surface reflectance | 1 | 65455 | 0.45-0.52 μm | 0.0000275 | -0.2 | |
SR_B2 | Band 2 (green) surface reflectance | 1 | 65455 | 0.52-0.60 μm | 0.0000275 | -0.2 | |
SR_B3 | Band 3 (red) surface reflectance | 1 | 65455 | 0.63-0.69 μm | 0.0000275 | -0.2 | |
SR_B4 | Band 4 (near infrared) surface reflectance | 1 | 65455 | 0.77-0.90 μm | 0.0000275 | -0.2 | |
SR_B5 | Band 5 (shortwave infrared 1) surface reflectance | 1 | 65455 | 1.55-1.75 μm | 0.0000275 | -0.2 | |
SR_B7 | Band 7 (shortwave infrared 2) surface reflectance | 1 | 65455 | 2.08-2.35 μm | 0.0000275 | -0.2 | |
SR_ATMOS_OPACITY | A general interpretation of atmospheric opacity generated by LEDAPS and based on the radiance viewed over Dark Dense Vegetation (DDV) within the scene. A general interpretation of atmospheric opacity is that values (after scaling by 0.001 is applied) less than 0.1 are clear, 0.1-0.3 are average, and values greater than 0.3 indicate haze or other cloud situations. SR values from pixels with high atmospheric opacity will be less reliable, especially under high solar zenith angle conditions. The SR_ATMOS_OPACITY band is provided for advanced users and for product quality assessment and has not been validated. Most users are advised to instead use the QA_PIXEL band information for cloud discrimination. | 0 | 10000 | 0.001 | 0 | ||
SR_CLOUD_QA | Cloud Quality Assessment | 0 | 0 | ||||
SR_CLOUD_QA Bitmask |
|
||||||
ST_B6 | Band 6 surface temperature. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 65535 | Kelvin | 10.40-12.50 μm | 0.00341802 | 149 |
ST_ATRAN | Atmospheric Transmittance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 10000 | 0.0001 | 0 | ||
ST_CDIST | Pixel distance to cloud. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 24000 | km | 0.01 | 0 | |
ST_DRAD | Downwelled Radiance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 28000 | W/(m^2*sr*um)/ DN | 0.001 | 0 | |
ST_EMIS | Emissivity estimated from ASTER GED. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 10000 | 0.0001 | 0 | ||
ST_EMSD | Emissivity standard deviation. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 10000 | 0.0001 | 0 | ||
ST_QA | Uncertainty of the Surface Temperature band. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 32767 | K | 0.01 | 0 | |
ST_TRAD | Thermal band converted to radiance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 22000 | W/(m^2*sr*um)/ DN | 0.001 | 0 | |
ST_URAD | Upwelled Radiance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out. | 0 | 28000 | W/(m^2*sr*um)/ DN | 0.001 | 0 | |
QA_PIXEL | Pixel quality attributes generated from the CFMASK algorithm. | 0 | 0 | ||||
QA_PIXEL Bitmask |
|
||||||
QA_RADSAT | Radiometric saturation QA | 0 | 0 | ||||
QA_RADSAT Bitmask |
|
代码:
获取的最大最小值的结果: 这里用的是.values().get(0),也就是第一个值
结果:
代码链接:
(179条消息) Google Earth Engine(GEE)——计算ndvi的零星植被状况(墨西哥为例)_此星光明2021年博客之星云计算Top3的博客-CSDN博客
往期推荐:
Google Earth Engine(GEE)——自动化制作30米Landsat影像和土地分类(只需要输入研究区路径)
Google Earth Engine ——Landsat 5 TM合成影像8天/32天/年际增强植被指数(EVI)数据集
Google Earth Engine ——Landsat 5 TM合成影像8天/32天/年际烧伤面积指数(BAI)
Google Earth Engine ——LANDSAT8系列归一化植被指数NDVI数据集
Google Earth Engine ——全球JRC/GSW1_3/MonthlyHistory数据集的观测数据
Google Earth Engine ——全球1984年至2015年地表水的位置和时间即地表水数据集的观测数据的元数据
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)