卷积神经网络中的CNN是啥?

举报
写程序的小王叔叔 发表于 2022/05/31 09:23:08 2022/05/31
【摘要】 主页:小王叔叔的博客支持:点赞👍关注✔️收藏💖​​1 概念百度百科中讲到卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。​CNN由纽约大学的Yann Lecun于1998年提出,其本质是一个...

主页小王叔叔的博客

支持:点赞👍关注✔️收藏💖





1 概念

百度百科中讲到卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。

CNN由纽约大学的Yann Lecun于1998年提出,其本质是一个多层感知机,成功的原因在于其所采用的局部连接和权值共享的方式:

  • 一方面减少了权值的数量使得网络易于优化

  • 另一方面降低了模型的复杂度,也就是减小了过拟合的风险

2 结构

卷积神经网络是一种带有卷积结构的深度神经网络,卷积结构可以减少深层网络占用的内存量,其三个关键的操作,其一是局部感受野,其二是权值共享,其三是pooling层,有效的减少了网络的参数个数,缓解了模型的过拟合问题。

卷积神经网络结构包括:卷积层池化层、和全连接层。通过堆叠这些层结构形成一个卷积神经网络。将原始图像转化为类别得分,其中卷积层和全连接层拥有参数,激活层和池化层没有参数。

(1)卷积层(Convolutional Layer) 

 主要作用是提取特征

     属构建神经网络的核心层,在其中产生大部分的计算量,通过它我们也可以提取图像的特征。

     1. 滤波器的作用或者说是卷积的作用。

     2. 可以被看做是神经元的一个输出。

     3. 降低参数的数量。

(2)池化层(Max Pooling Layer) 

主要作用是下采样(downsampling),却不会损坏识别结果。

 池化层本质上是下采样,利用图像局部相关性的原理(认为最大值或者均值代表了这个局部的特征),对图像进行子抽样,可以减少数据处理量同时保留有用信息。池化操作可以逐渐降低数据体的空间尺寸,这样的话就能减少网络中参数的数量,使得计算资源耗费变少,也能有效控制过拟合。

          通常卷积层池化层重复多次形成具有多个隐藏层的网络,俗称深度神经网络

(3)全连接层(Fully Connected Layer) 

主要作用是分类。

     通过前面(1)和(2)得到的特征后,在全连接层中进行更好的特征分类,进一步将特征转化为类=类别进行输出。

(4)DropOut

针对某个神经元,通过定义的概率删除一些神经元,同时保证输入层和输出层保持不变,然后通过方法进行更新。

 (5)softmax层

Softmax层也不属于CNN中单独的层,一般要用CNN做分类的话,我们习惯的方式是将神经元的输出变成概率的形式。

3  特征

(1)局部感受野

(2)卷积层的权值共享


【参考】

百度安全验证

卷积神经网络(CNN)的整体框架及细节

CNN原理 - 走看看

CNN(卷积神经网络)介绍 - 知乎

(7)卷积神经网络的基本结构 - 简书

卷积神经网络(CNN)详解 - 知乎

卷积神经网络超详细介绍

59.CNN的特点和优势


⚠️注意 ~

💯本期内容就结束了,如果内容有误,麻烦大家评论区指出

如有疑问❓可以在评论区留言💬或私信留言💬,尽我最大能力🏃‍♀️帮大家解决👨‍🏫!

如果我的文章有帮助,欢迎关注+点赞✔️鼓励博主🏃,您的鼓励是我分享的动力🏃🏃🏃~

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。