【语音去噪】基于matlab基本维纳滤波算法语音去噪【含Matlab源码 570期】
一、获取代码方式
获取代码方式1:
完整代码已上传我的资源:【语音去噪】基于matlab基本维纳滤波算法语音去噪【含Matlab源码 570期】
获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、维纳滤波简介
本章提出了一种语音增强算法,该算法以基于先验信噪比估计的维纳滤波法为基础。通过计算无声段的统计平均得到初始噪声功率谱,并平滑处理初始噪声功率谱和带噪语音功率谱,更新了噪声功率谱;最后,考虑了某频率点处噪声急剧增大的情况,做了相关验证,该算法能有效地抑制变化范围不大或是稳定的噪声,但是对实际中的变化范围很广的噪声效果不是很好。
1 语音增强概述
1.1 语音增强的相关概念
嵌在语音系统中,语音信号不可避免的会受到周围噪声的干扰,从而影响语音的质量与可懂度。
语音增强:其实就是带噪语音中提取尽可能纯净的语音,改善语音质量和可懂度,提高噪声环境下语音通信系统的性能。
噪声都随机产生的,不可能完全消除。语音增强的目标是:减弱噪声、消除背景噪声、改进语音质量、使听着乐于接受,提高语音可懂度。
1.2 语音增强的相关算法
由于噪声来源众多,特性各不相同。语音增强处理系统的应用场合千差万别。
因此,不存在一种可以通用于各种噪声环境的语音增强算法。针对不同的环境,采取不同的语音增强算法。
语音增强算法按处理方式可以分为:基于语音周期性的增强算法,基于全极点模型的增强算法,基于短时谱估计的增强算法,基于信号子空间的增强算法和基于HMM的增强算法。
从目前的发展来看,基于短时谱估计的方法是最有效的方法。具体包括谱减法、维纳滤波、最小均方误差短时谱幅度估计法(MMSE-STSA)和最小均方误差对数谱幅度估计法(MMSE-LSA)。本文主要讨论使用维纳滤波器实现语音的增强处理。
2 基于先验信噪比估计的维纳滤波语音增强理论
先验信噪比是语音增强算法中非常重要的参数。 通过Ephraim和 Malah提出的“直接判决”估计来计算先验信噪比的方法是最有效的和最容易计算的。
三、部分源代码
clear all; clc; close all;
[xx, fs] = wavread('C5_3_y.wav'); % 读入数据文件
xx=xx-mean(xx); % 消除直流分量
x=xx/max(abs(xx)); % 幅值归一化
IS=0.25; % 设置前导无话段长度
wlen=200; % 设置帧长为25ms
inc=80; % 设置帧移为10ms
SNR=5; % 设置信噪比SNR
NIS=fix((IS*fs-wlen)/inc +1); % 求前导无话段帧数
alpha=2;
beta=0.01;
signal=awgn(x,SNR,'measured','db'); % 叠加噪声
output=Weina_Norm(x,wlen,inc,NIS,alpha,beta) ;
output=output/max(abs(output));
len=min(length(output),length(x));
x=x(1:len);
signal=signal(1:len);
output=output(1:len);
snr1=SNR_Calc(x,signal); % 计算初始信噪比
snr2=SNR_Calc(x,output); % 计算降噪后的信噪比
snr=snr2-snr1;
fprintf('snr1=%5.4f snr2=%5.4f snr=%5.4f\n',snr1,snr2,snr);
function frameout=enframe(x,win,inc)
nx=length(x(:)); % 取数据长度
nwin=length(win); % 取窗长
if (nwin == 1) % 判断窗长是否为1,若为1,即表示没有设窗函数
len = win; % 是,帧长=win
else
len = nwin; % 否,帧长=窗长
end
if (nargin < 3) % 如果只有两个参数,设帧inc=帧长
inc = len;
end
nf = fix((nx-len+inc)/inc); % 计算帧数
frameout=zeros(nf,len); % 初始化
indf= inc*(0:(nf-1)).'; % 设置每帧在x中的位移量位置
inds = (1:len); % 每帧数据对应1:len
frameout(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:)); % 对数据分帧
if (nwin > 1) % 若参数中包括窗函数,把每帧乘以窗函数
w = win(:)'; % 把win转成行数据
function frameout=filpframe(x,win,inc)
[nf,len]=size(x);
nx=(nf-1) *inc+len; %原信号长度
frameout=zeros(nx,1);
nwin=length(win); % 取窗长
if (nwin ~= 1) % 判断窗长是否为1,若为1,即表示没有设窗函数
winx=repmat(win',nf,1);
x=x./winx; % 除去加窗的影响
x(find(isinf(x)))=0; %去除除0得到的Inf
end
sig=zeros((nf-1)*inc+len,1);
for i=1:nf
start=(i-1)*inc+1;
xn=x(i,:)';
sig(start:start+len-1)=sig(start:start+len-1)+xn;
end
function [NoiseFlag, SpeechFlag, NoiseCounter, Dist]=vad_LogSpec(signal,noise,NoiseCounter,NoiseMargin,Hangover)
% 设置缺省值
if nargin<4
NoiseMargin=3;
end
if nargin<5
Hangover=8;
end
if nargin<3
NoiseCounter=0;
end
% 本帧语音幅值对数频谱和噪声对数频谱之差值
SpectralDist= 20*(log10(signal)-log10(noise));
SpectralDist(find(SpectralDist<0))=0; % 寻找差值小于0值置为0
Dist=mean(SpectralDist); % 用平均求出Dist
if (Dist < NoiseMargin) % Dist 是否小于 NoiseMargin
NoiseFlag=1; % 是,NoiseFlag设为1
NoiseCounter=NoiseCounter+1; % NoiseCounter加1
else
NoiseFlag=0; % 否,NoiseFlag设为0
NoiseCounter=0; % NoiseCounter清零
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
四、运行结果
五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/115000878
- 点赞
- 收藏
- 关注作者
评论(0)