【图像加密】基于matlab DNA混沌系统图像加密【含Matlab源码 1190期】

举报
海神之光 发表于 2022/05/30 00:49:10 2022/05/30
【摘要】 一、DNA混沌系统图像加密简介 基于DNA编码的图像加密,采用将图像分块进行DNA编码,通过CHEN超混沌系统产生密钥,进行特殊的DNA运算后解码得到加密后的图像。 Logistic混沌置乱,先不说有多...

一、DNA混沌系统图像加密简介

基于DNA编码的图像加密,采用将图像分块进行DNA编码,通过CHEN超混沌系统产生密钥,进行特殊的DNA运算后解码得到加密后的图像。
Logistic混沌置乱,先不说有多复杂,其实很简单。
Logistic函数是源于一个人口统计的动力学系统,其系统方程形式如下:
X(k+1) = u * X(k) * [1 - X(k)],(k=0,1,…,n)
先不用管这个方程是怎么得出来的,觉得不舒服的话自己百度去。可以看出这个方程是非线性的,迭代的形式。要使用的话,我们需要知道两个东西:
① 初值:X(0)
② 参数:u

为什么这个方程可以称作混沌呢?它什么时候是一个混沌系统呢?这个也是有条件的:

① 0 < X(0) < 1

② 3.5699456… < u <=4

当满足上述两个条件时,Logistic函数工作于混沌状态。这两个条件是怎么来的请百度,我们这里只说算法和实现。什么是混沌状态:顾名思义就是一种无序的、不可预测的、混乱的、摸不到头、摸不到尾的状态。混沌状态时会出现什么现象,我们以下面的参数为例:

① X(0) = 0.1

② u = 4

当迭代n次后,我们就得到了X(1)、X(2)、…,X(n)这么n个值。那么这就是一个混沌序列,是一维的暂且称作序列A,也就是我们想要得到的序列,在MATLAB中,可以看出X(i)(i=1,2,…,n)的取值是在(0,1)之间的——这是一个很好地特性,就像图像灰度值是在(0,255)之间一样。那么我们把这个一维序列归一化到(0,255)之间得到序列B。
再来看加密过程。对于一幅MN大小的图像(暂且称为Picture),我们需要产生一个同样大小的矩阵来对其进行加密。如此说来,只需要迭代MN次得到序列A,再转成序列B,此时序列B是一维的,将其转化成M*N的二维矩阵(暂且称为Fuck)。因此,用Fuck与Picutre进行异或,便可得到一幅新的图像,称作Rod,如此便完成了一次图像加密,加密后的图像为Rod。

Rod=Picture⊕Fuck(⊕表示异或)

这样我们手中的秘钥是:u,X(0)

此种加密方式称作序列加密,可以看出这种加密方式改变了下像素的灰度(直方图变了),没有改变位置。解密同样道理:Picture = Rod⊕Fuck。

二、部分源代码

clear;clc;
I=imread('lena.bmp','bmp');         %读取图像信息
figure;imshow(I);title('原始图片');
figure;imhist(I);title('原始图片直方图');
axis([0 255 0 4000]);
[M,N]=size(I);                      %将图像的行列赋值给M,N
t=4;    %分块大小

%% 原始图片信息熵
T1=imhist(I);   %统计图像灰度值从0~255的分布情况,存至T1
S1=sum(T1);     %计算整幅图像的灰度值
xxs1=0;
for i=1:256
    pp1=T1(i)/S1;   %每个灰度值占比,即每个灰度值的概率
    if pp1~=0
        xxs1=xxs1-pp1*log2(pp1);
    end
end

%% 原始图像相邻像素相关性分析
%{
先随机在0~M-1行和0~N-1列选中1000个像素点,
计算水平相关性时,选择每个点的相邻的右边的点;
计算垂直相关性时,选择每个点的相邻的下方的点;
计算对角线相关性时,选择每个点的相邻的右下方的点。
%}
NN=1000;    %随机取1000对像素点
x1=ceil(rand(1,NN)*(M-1));      %生成10001~M-1的随机整数作为行
y1=ceil(rand(1,NN)*(N-1));      %生成10001~N-1的随机整数作为列
EX1=0;EY1_SP=0;DX1=0;DY1_SP=0;COVXY1_SP=0;    %计算水平相关性时需要的变量
EY1_CZ=0;DY1_CZ=0;COVXY1_CZ=0;                %垂直
EY1_DJX=0;DY1_DJX=0;COVXY1_DJX=0;             %对角线
I=double(I);
for i=1:NN
    %第一个像素点的E,水平、垂直、对角线时计算得出的第一个像素点的E相同,统一用EX1表示
    EX1=EX1+I(x1(i),y1(i)); 
    %第二个像素点的E,水平、垂直、对角线的E分别对应EY1_SP、EY1_CZ、EY1_DJX
    EY1_SP=EY1_SP+I(x1(i),y1(i)+1);
    EY1_CZ=EY1_CZ+I(x1(i)+1,y1(i));
    EY1_DJX=EY1_DJX+I(x1(i)+1,y1(i)+1);
end
%统一在循环外除以像素点对数1000,可减少运算次数
EX1=EX1/NN;
EY1_SP=EY1_SP/NN;
EY1_CZ=EY1_CZ/NN;
EY1_DJX=EY1_DJX/NN;
for i=1:NN
    %第一个像素点的D,水平、垂直、对角线时计算得出第一个像素点的D相同,统一用DX表示
    DX1=DX1+(I(x1(i),y1(i))-EX1)^2;
    %第二个像素点的D,水平、垂直、对角线的E分别对应DY1_SP、DY1_CZ、DY1_DJX
    DY1_SP=DY1_SP+(I(x1(i),y1(i)+1)-EY1_SP)^2;
    DY1_CZ=DY1_CZ+(I(x1(i)+1,y1(i))-EY1_CZ)^2;
    DY1_DJX=DY1_DJX+(I(x1(i)+1,y1(i)+1)-EY1_DJX)^2;
    %两个相邻像素点相关函数的计算,水平、垂直、对角线
    COVXY1_SP=COVXY1_SP+(I(x1(i),y1(i))-EX1)*(I(x1(i),y1(i)+1)-EY1_SP);
    COVXY1_CZ=COVXY1_CZ+(I(x1(i),y1(i))-EX1)*(I(x1(i)+1,y1(i))-EY1_CZ);
    COVXY1_DJX=COVXY1_DJX+(I(x1(i),y1(i))-EX1)*(I(x1(i)+1,y1(i)+1)-EY1_DJX);
end
%统一在循环外除以像素点对数1000,可减少运算次数
DX1=DX1/NN;
DY1_SP=DY1_SP/NN;
DY1_CZ=DY1_CZ/NN;
DY1_DJX=DY1_DJX/NN;
COVXY1_SP=COVXY1_SP/NN;
COVXY1_CZ=COVXY1_CZ/NN;
COVXY1_DJX=COVXY1_DJX/NN;
%水平、垂直、对角线的相关性
RXY1_SP=COVXY1_SP/sqrt(DX1*DY1_SP);
RXY1_CZ=COVXY1_CZ/sqrt(DX1*DY1_CZ);
RXY1_DJX=COVXY1_DJX/sqrt(DX1*DY1_DJX);

%% 1.补零
%将图像的行列数都补成可以被t整除的数,t为分块的大小。
M1=mod(M,t);
N1=mod(N,t);
if M1~=0
    I(M+1:M+t-M1,:)=0;
end
if N1~=0
    I(:,N+1:N+t-N1)=0;
end
[M,N]=size(I);  %补零后的行数和列数
SUM=M*N;

%% 2.产生Logistic混沌序列
u=3.99;     %Logistic参数μ,自定为3.99
x0=sum(I(:))/(255*SUM);     %计算得出Logistic初值x0
x0=floor(x0*10^4)/10^4;     %保留4位小数
p=zeros(1,SUM+1000);        %预分配内存
p(1)=x0;
for i=1:SUM+999                 %进行SUM+999次循环,共得到SUM+1000点(包括初值)
    p(i+1)=u*p(i)*(1-p(i));
end
p=p(1001:length(p));            %去除前1000点,获得更好的随机性

%% 3.将p序列变换到0~255范围内整数,转换成M*N的二维矩阵R
p=mod(ceil(p*10^3),256);
R=reshape(p,N,M)';  %转成M行N列的随机矩阵R

%% 4.求解Chen氏超混沌系统
%求四个初值X0,Y0,Z0,H0
r=(M/t)*(N/t);      %r为分块个数
%求出四个初值
X0=sum(sum(bitand(I,3)))/(3*SUM);
Y0=sum(sum(bitand(I,12)/4))/(3*SUM);
Z0=sum(sum(bitand(I,48)/16))/(3*SUM);
H0=sum(sum(bitand(I,192)/64))/(3*SUM);
%保留四位小数
X0=floor(X0*10^4)/10^4;
Y0=floor(Y0*10^4)/10^4;
Z0=floor(Z0*10^4)/10^4;
H0=floor(H0*10^4)/10^4;
%根据初值,求解Chen氏超混沌系统,得到四个混沌序列
A=chen_output(X0,Y0,Z0,H0,r);   
X=A(:,1);
X=X(1502:length(X));        %去除前1501项,获得更好的随机性(求解陈氏系统的子函数多计算了1500点)
Y=A(:,2);
Y=Y(1502:length(Y));
Z=A(:,3);
Z=Z(1502:length(Z));
H=A(:,4);
H=H(1502:length(H));

%% 5.DNA编码
%X,Y分别决定I和R的DNA编码方式,有8种,1~8
%Z决定运算方式,有3种,0~20表示加,1表示减,2表示异或
%H表示DNA解码方式,有8种,1~8
X=mod(floor(X*10^4),8)+1;
Y=mod(floor(Y*10^4),8)+1;
Z=mod(floor(Z*10^4),3);
H=mod(floor(H*10^4),8)+1;
e=N/t;  %e表示每一行可以分为多少块
Q1=DNA_bian(fenkuai(t,I,1),X(1));
Q2=DNA_bian(fenkuai(t,R,1),Y(1));
Q_last=DNA_yunsuan(Q1,Q2,Z(1));
Q(1:t,1:t)=DNA_jie(Q_last,H(1));
for i=2:r
    Q1=DNA_bian(fenkuai(t,I,i),X(i));   %对原始图像每一个分块按X对应的序号进行DNA编码
    Q2=DNA_bian(fenkuai(t,R,i),Y(i));   %对R的每一个分块按Y对应的序号进行DNA编码
    Q3=DNA_yunsuan(Q1,Q2,Z(i));         %对上面两个编码好的块按Z对应的序号进行DNA运算
    Q4=DNA_yunsuan(Q3,Q_last,Z(i));     %运算结果在和前一块按Z对应的序号再一次进行运算,称为扩散
    Q_last=Q4;
    xx=floor(i/e)+1;
    yy=mod(i,e);
    if yy==0
        xx=xx-1;
        yy=e;
    end
    Q((xx-1)*t+1:xx*t,(yy-1)*t+1:yy*t)=DNA_jie(Q4,H(i));    %将每一块合并成完整的图Q
end
Q=uint8(Q);
imwrite(Q,'加密后的lena.bmp','bmp');        
figure;imshow(Q);title('加密后图片');
figure;imhist(Q);title('加密后直方图');
axis([0 255 0 2000]);

%% 加密后信息熵
T2=imhist(Q);
S2=sum(T2);
xxs2=0;
for i=1:256
    pp2=T2(i)/S2;
    if pp2~=0
        xxs2=xxs2-pp2*log2(pp2);
    end
end

%% 加密图像相邻图像相关性分析
%{
先随机在0~M-1行和0~N-1列选中1000个像素点,
计算水平相关性时,选择每个点的相邻的右边的点;
计算垂直相关性时,选择每个点的相邻的下方的点;
计算对角线相关性时,选择每个点的相邻的右下方的点。
%}
Q=double(Q);
EX2=0;EY2_SP=0;DX2=0;DY2_SP=0;COVXY2_SP=0;    %水平
EY2_CZ=0;DY2_CZ=0;COVXY2_CZ=0;    %垂直
EY2_DJX=0;DY2_DJX=0;COVXY2_DJX=0;   %对角线
for i=1:NN
    %第一个像素点的E,水平、垂直、对角线时计算得出的第一个像素点的E相同,统一用EX2表示
    EX2=EX2+Q(x1(i),y1(i));
    %第二个像素点的E,水平、垂直、对角线的E分别对应EY2_SP、EY2_CZ、EY2_DJX
    EY2_SP=EY2_SP+Q(x1(i),y1(i)+1);
    EY2_CZ=EY2_CZ+Q(x1(i)+1,y1(i));
    EY2_DJX=EY2_DJX+Q(x1(i)+1,y1(i)+1);
end
%统一在循环外除以像素点对数1000,可减少运算次数
EX2=EX2/NN;
EY2_SP=EY2_SP/NN;
EY2_CZ=EY2_CZ/NN;
EY2_DJX=EY2_DJX/NN;
for i=1:NN
    %第一个像素点的D,水平、垂直、对角线时计算得出第一个像素点的D相同,统一用DX2表示
    DX2=DX2+(Q(x1(i),y1(i))-EX2)^2;
    %第二个像素点的D,水平、垂直、对角线的E分别对应DY2_SP、DY2_CZ、DY2_DJX
    DY2_SP=DY2_SP+(Q(x1(i),y1(i)+1)-EY2_SP)^2;
    DY2_CZ=DY2_CZ+(Q(x1(i)+1,y1(i))-EY2_CZ)^2;
    DY2_DJX=DY2_DJX+(Q(x1(i)+1,y1(i)+1)-EY2_DJX)^2;
    %两个相邻像素点相关函数的计算,水平、垂直、对角线
    COVXY2_SP=COVXY2_SP+(Q(x1(i),y1(i))-EX2)*(Q(x1(i),y1(i)+1)-EY2_SP);
    COVXY2_CZ=COVXY2_CZ+(Q(x1(i),y1(i))-EX2)*(Q(x1(i)+1,y1(i))-EY2_CZ);
    COVXY2_DJX=COVXY2_DJX+(Q(x1(i),y1(i))-EX2)*(Q(x1(i)+1,y1(i)+1)-EY2_DJX);
end
%统一在循环外除以像素点对数1000,可减少运算次数
DX2=DX2/NN;
DY2_SP=DY2_SP/NN;
DY2_CZ=DY2_CZ/NN;
DY2_DJX=DY2_DJX/NN;
COVXY2_SP=COVXY2_SP/NN;
COVXY2_CZ=COVXY2_CZ/NN;
COVXY2_DJX=COVXY2_DJX/NN;
%水平、垂直、对角线的相关性
RXY2_SP=COVXY2_SP/sqrt(DX2*DY2_SP);
RXY2_CZ=COVXY2_CZ/sqrt(DX2*DY2_CZ);
RXY2_DJX=COVXY2_DJX/sqrt(DX2*DY2_DJX);

%% 输出数据信息
disp('加密成功');  
disp(['密钥1:μ=',num2str(u),'     密钥2:x0=',num2str(x0),'    密钥3:x(0)=',num2str(X0)]);
disp(['密钥4:y(0)=',num2str(Y0),'  密钥2:z(0)=',num2str(Z0),'   密钥3:h(0)=',num2str(H0)]);
disp(['原始图片信息熵=',num2str(xxs1),'  加密后图片信息熵=',num2str(xxs2)]);
disp(['原始图片相关性:','  水平相关性=',num2str(RXY1_SP),'  垂直相关性=',num2str(RXY1_CZ),'  对角线相关性=',num2str(RXY1_DJX)]);
disp(['加密图片相关性:','  水平相关性=',num2str(RXY2_SP),'  垂直相关性=',num2str(RXY2_CZ),'  对角线相关性=',num2str(RXY2_DJX)]);
 

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/119453763

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。