机器学习之算法案例手写数字识别
【摘要】 算法案例手写数字识别 加载模型 算法案例手写数字识别MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片。选择算法,并保存模型import picklefrom sklearn.linear_model import LogisticRegressionfrom sklearn.metr...
算法案例手写数字识别
MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个
训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度
手写数字图片。
选择算法,并保存模型
import pickle
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
import joblib
with open('mnist.pkl','rb') as f:
train, val ,test = pickle.load(f,encoding='iso-8859-1')
train_x = train[0]
train_y = train[1]
test_x = test[0]
test_y = test[1]
# lr = LogisticRegression()
# lr.fit(train_x,train_y)
rdt = RandomForestClassifier()
rdt.fit(train_x,train_y)
acc = accuracy_score(rdt.predict(train_x),train_y)
print("训练集上的准确率为:",acc)
acc = accuracy_score(rdt.predict(test_x),test_y)
print("测试集上的准确率为:",acc)
joblib.dump(rdt,'rdt.pkl')
加载模型
给出识别图片
颜色转换
import cv2
img = cv2.imread('1.png')
b = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
w = 255 - b
cv2.imwrite('9.png',w)
import joblib
import cv2
from sklearn.preprocessing import StandardScaler
rdt = joblib.load('rdt.pkl')
#读取图片
img = cv2.imread('9.png',0)
img = cv2.resize(img,(28,28))
test = img.reshape(1,28*28)
std = StandardScaler()
test = std.fit_transform(test)
pre = rdt.predict(test)
print(pre)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
下标为7,查找图片
。。0 。。。1。。。2。。。3。。4。。5。。。6。。7。。。8。。。9
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)