【LSSVM回归预测】基于matlab飞蛾扑火算法优化LSSVM回归预测【含Matlab源码 142期】
一、简介
LSSVM的特性
1) 同样是对原始对偶问题进行求解,但是通过求解一个线性方程组(优化目标中的线性约束导致的)来代替SVM中的QP问题(简化求解过程),对于高维输入空间中的分类以及回归任务同样适用;
2) 实质上是求解线性矩阵方程的过程,与高斯过程(Gaussian processes),正则化网络(regularization networks)和费雪判别分析(Fisher discriminant analysis)的核版本相结合;
3) 使用了稀疏近似(用来克服使用该算法时的弊端)与稳健回归(稳健统计);
4) 使用了贝叶斯推断(Bayesian inference);
5) 可以拓展到非监督学习中:核主成分分析(kernel PCA)或密度聚类;
6) 可以拓展到递归神经网络中。
LSSVM用于分类任务
1) 优化目标
LSSVM的弊端
注意到解决分类任务时,在求解最优化过程中得到α i = γ e i \alpha_{i}=\gamma{e_{i}}αi=γei,由于拉格朗日乘子法中对应于等式约束的拉格朗日乘子α i ≠ 0 \alpha_{i}\neq{0}αi̸=0,因此全部训练样本都会被作为支持向量来看待,这就会导致其丧失SVM原有的稀疏性质,但是还可以通过对训练集进行基于支持度的“减枝”(pruning)处理来达到稀疏化的目的,这一步也可以看做是一种稀疏近似(sparse approximate)操作。
飞蛾扑火优化(Moth-flame optimization,MFO),由Seyedali Mirjalili在2015年提出,为优化领域提供了一种新的启发式搜索范式:螺旋搜索。
飞蛾在夜间有一种特殊的导航方式:横向定向。即它会与月亮(光源)保持一定的角度飞行,从而能够保持直线的飞行路径,但是,这种方式只在光源离飞蛾较远的情况下才有效。当有人造光源存在时,飞蛾会被人工灯光所欺骗,一直保持与人造灯光相同的角度飞行,由于它与光源的距离过近,它飞行的路径已经不是直线,而是一种螺旋的路径。
受这种自然现象的启发,Seyedali Mirjalili将飞蛾绕着光源螺旋飞行的过程抽象成为一个寻优的过程,飞蛾飞行的整个空间即是问题的解空间,一只飞蛾即是问题的一个解,而火焰(光源)即是问题的一个较优解,每一只飞蛾对应一个光源,避免了算法陷入局部最优;当飞蛾与火焰足够多的时候,飞蛾的飞行能够搜索解空间的绝大部分区域,从而保证了算法的探索能力;而在寻优的过程中,火焰数随着迭代次数的增加而减少,使飞蛾能够充分搜索更优解的邻域空间,保证了算法的利用能力。
正是基于以上特点,MFO在探索与利用之间找到了平衡,从而使算法在优化问题中有一个较好的效果。
总的来说MFO也是一种基于种群的随机启发式搜索算法,它与PSO、GSA等算法最大的区别就在于其粒子搜索路径是螺旋形的,粒子围绕着更优解以一种螺旋的方式移动,而不是直线移动。
MFO的过程如下:
1.初始化飞蛾种群
2.对飞蛾种群进行适应度评价
3.重复如下过程直到达到停止标准:
3.1自适应更新火焰个数n,当迭代次数为1时,飞蛾个数即为火焰个数
3.2对飞蛾种群适应度进行排序,取出适应度较好的n个飞蛾作为火焰
3.3更新飞蛾的搜索参数。
3.4根据每只飞蛾对应的火焰与飞行参数更新飞蛾的位置
4.输出所得最优解(火焰)
具体的飞蛾位置更新公式见论文:Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
二、源代码
%=====================================================================
%初始化
clc
close all
clear
format long
tic
%==============================================================
%%导入数据
data=xlsread('1.xlsx');
[row,col]=size(data);
x=data(:,1:col-1);
y=data(:,col);
set=1; %设置测量样本数
row1=row-set;%
train_x=x(1:row1,:);
train_y=y(1:row1,:);
test_x=x(row1+1:row,:);%预测输入
test_y=y(row1+1:row,:);%预测输出
train_x=train_x';
train_y=train_y';
test_x=test_x';
test_y=test_y';
%%数据归一化
[train_x,minx,maxx, train_yy,miny,maxy] =premnmx(train_x,train_y);
test_x=tramnmx(test_x,minx,maxx);
train_x=train_x';
train_yy=train_yy';
train_y=train_y';
test_x=test_x';
test_y=test_y';
%% 参数初始化
eps = 10^(-6);
%%定义lssvm相关参数
type='f';
kernel = 'RBF_kernel';
N=20; % Number of search agents
Max_iteration=100; % Maximum numbef of iterations
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
% for i=1:SearchAgents_no
% Positions(i,1)=ceil(rand(1)*(ub(1)-lb(1))+lb(1));
% Positions(i,2)=ceil(rand(1)*(ub(2)-lb(2))+lb(2));
%
end
%% 结果分析
plot( Convergence_curve,'LineWidth',2);
title(['飞蛾扑火优化算法适应度曲线','(参数c1=',num2str(Best_flame_pos(1)),',c2=',num2str(Best_flame_pos(2)),',终止代数=',num2str(Max_iteration),')'],'FontSize',13);
xlabel('进化代数');ylabel('误差适应度');
bestc = Best_flame_pos(1);
bestg = Best_flame_pos(2);
gam=bestc;
sig2=bestg;
model=initlssvm(train_x,train_yy,type,gam,sig2,kernel,proprecess);%原来是显示
model=trainlssvm(model);%原来是显示
%求出训练集和测试集的预测值
[train_predict_y,zt,model]=simlssvm(model,train_x);
[test_predict_y,zt,model]=simlssvm(model,test_x);
%预测数据反归一化
train_predict=postmnmx(train_predict_y,miny,maxy);%预测输出
test_predict=postmnmx(test_predict_y,miny,maxy);
%计算均方差
trainmse=sum((train_predict-train_y).^2)/length(train_y);
%testmse=sum((test_predict-test_y).^2)/length(test_y)
for i=1:set
RD(i)=(test_predict(i)-test_y(i))/test_y(i)*100;
end
for i=1:set
D(i)=test_predict(i)-test_y(i);
end
RD=RD'
disp(['飞蛾扑火优化算法优化svm预测误差=',num2str(D)])
figure
plot(train_predict,':og')
hold on
plot(train_y,'- *')
legend('预测输出','期望输出')
title('飞蛾扑火优化svm网络预测输出','fontsize',12)
ylabel('函数输出','fontsize',12)
xlabel('样本','fontsize',12)
toc %计算时间
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
[4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
[5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/113027995
- 点赞
- 收藏
- 关注作者
评论(0)