【疾病分类】基于matlab GUI模糊逻辑分类叶病严重程度分级系统【含Matlab源码 194期】

举报
海神之光 发表于 2022/05/29 04:35:41 2022/05/29
【摘要】 一、模糊逻辑(Fuzzy Logic)简介 理论知识参考:模糊逻辑(Fuzzy Logic) 二、部分源代码 function varargout = LeafDiseaseGradingSyste...

一、模糊逻辑(Fuzzy Logic)简介

理论知识参考:模糊逻辑(Fuzzy Logic)

二、部分源代码

function varargout = LeafDiseaseGradingSystemGUI(varargin)
% LeafDiseaseGradingSystemGUI MATLAB code for LeafDiseaseGradingSystemGUI.fig
%      LeafDiseaseGradingSystemGUI, by itself, creates a new LeafDiseaseGradingSystemGUI or raises the existing
%      singleton*.
%
%      H = LeafDiseaseGradingSystemGUI returns the handle to a new LeafDiseaseGradingSystemGUI or the handle to
%      the existing singleton*.
%
%      LeafDiseaseGradingSystemGUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in LeafDiseaseGradingSystemGUI.M with the given input arguments.
%
%      LeafDiseaseGradingSystemGUI('Property','Value',...) creates a new LeafDiseaseGradingSystemGUI or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the LeafDiseaseGradingSystemGUI before LeafDiseaseGradingSystemGUI_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to LeafDiseaseGradingSystemGUI_OpeningFcn via varargin.
%
%      *See LeafDiseaseGradingSystemGUI Options on GUIDE's Tools menu.  Choose "LeafDiseaseGradingSystemGUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help LeafDiseaseGradingSystemGUI

% Last Modified by GUIDE v2.5 20-Jan-2015 14:49:28

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @LeafDiseaseGradingSystemGUI_OpeningFcn, ...
                   'gui_OutputFcn',  @LeafDiseaseGradingSystemGUI_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before LeafDiseaseGradingSystemGUI is made visible.
function LeafDiseaseGradingSystemGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to LeafDiseaseGradingSystemGUI (see VARARGIN)
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);

Disease_Grading = readfis('Disease_Grading.fis');

handles.Disease_Grading = Disease_Grading;
guidata(hObject,handles);

% Choose default command line output for LeafDiseaseGradingSystemGUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes LeafDiseaseGradingSystemGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = LeafDiseaseGradingSystemGUI_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in select_image.
function select_image_Callback(hObject, eventdata, handles)
% hObject    handle to select_image (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

       [File_Name, Path_Name] = uigetfile('PATHNAME');
       I = imread([Path_Name,File_Name]);
       imshow([Path_Name,File_Name], 'Parent', handles.axes1); title('Original Leaf Image', 'Parent', handles.axes1);
       
       %# store queryname, version 1
       handles.I = I;
       guidata(hObject,handles);
       



% --- Executes on button press in segmentation.
function segmentation_Callback(hObject, eventdata, handles)
% hObject    handle to segmentation (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

I = handles.I;

% Creating color transformation from sRGB to L*a*b % 
cform = makecform('srgb2lab'); 

lab_I = applycform(I,cform);

ab = double(lab_I(:,:,2:3));

nrows = size(ab,1); 
ncols = size(ab,2);

ab = reshape(ab,nrows*ncols,2); 
% No of clusters to be created with five iterations % 
nColors =5; 
[cluster_idx cluster_center] = kmeans(ab,nColors,'EmptyAction','singleton','distance','sqEuclidean','start',[128,128;128,128;128,128;128,128;128,128]); 

pixel_labels = reshape(cluster_idx,nrows,ncols); 

segmented_images = cell(5);

rgb_label = repmat(pixel_labels,[1 1 3]);

for k = 1:nColors 
color = I; 
color(rgb_label ~= k) = 0; 
segmented_images{k} = color; 
end

% displaying different show_clusters objects %

I_cluster_1 = segmented_images{1};

I_cluster_2 = segmented_images{2};

I_cluster_3 = segmented_images{3};

I_cluster_4 = segmented_images{4};

I_cluster_5 = segmented_images{5};

imshow(I_cluster_1,'Parent', handles.axes2); title('Cluster 1');

 handles.I_cluster_1 = I_cluster_1;
 handles.I_cluster_2 = I_cluster_2;
 handles.I_cluster_3 = I_cluster_3;
 handles.I_cluster_4 = I_cluster_4;
 handles.I_cluster_5 = I_cluster_5;

 guidata(hObject,handles);


% --- Executes on button press in disease_grade.
function disease_grade_Callback(hObject, eventdata, handles)
% hObject    handle to disease_grade (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

Disease_Grading = handles.Disease_Grading;

white_pixels_I = handles.white_pixels_I ;
 
white_pixels_I_selected = handles.white_pixels_I_selected ;
 
 percentage_infected = (white_pixels_I_selected/white_pixels_I)*100;
 
 grade = evalfis(percentage_infected,Disease_Grading);
 
 figure();
 
 plot(percentage_infected,grade,'g*');
 
 legend('Percent - Grade of Disease');

title('Disease Grade Classification Using Fuzzy Logic');
xlabel('Percentage');
ylabel('Disease Grade');

% --- Executes on button press in binary_original.
function binary_original_Callback(hObject, eventdata, handles)
% hObject    handle to binary_original (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

I = handles.I;

BW_I = im2bw(I,0.17);

white_pixels_I = sum(BW_I(:) == 1);

se = strel('disk',1);

closeBW = imclose(BW_I,se);

imshow(closeBW,'Parent', handles.axes2); title('Binary of Original Image');

handles.white_pixels_I = white_pixels_I;

guidata(hObject,handles);

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/113528938

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。