【人脸识别】基于matlab GUI LPP人脸特征提取【含Matlab源码 1491期】
【摘要】
一、简介
理论知识参考文献:基于局部特征提取人脸识别方法优化研究
二、部分源代码
function varargout = spectacles_lpp_classification(varargi...
一、简介
理论知识参考文献:基于局部特征提取人脸识别方法优化研究
二、部分源代码
function varargout = spectacles_lpp_classification(varargin)
% SPECTACLES_LPP_CLASSIFICATION MATLAB code for spectacles_lpp_classification.fig
% SPECTACLES_LPP_CLASSIFICATION, by itself, creates a new SPECTACLES_LPP_CLASSIFICATION or raises the existing
% singleton*.
%
% H = SPECTACLES_LPP_CLASSIFICATION returns the handle to a new SPECTACLES_LPP_CLASSIFICATION or the handle to
% the existing singleton*.
%
% SPECTACLES_LPP_CLASSIFICATION('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SPECTACLES_LPP_CLASSIFICATION.M with the given input arguments.
%
% SPECTACLES_LPP_CLASSIFICATION('Property','Value',...) creates a new SPECTACLES_LPP_CLASSIFICATION or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before spectacles_lpp_classification_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to spectacles_lpp_classification_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help spectacles_lpp_classification
% Last Modified by GUIDE v2.5 25-May-2021 21:40:39
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @spectacles_lpp_classification_OpeningFcn, ...
'gui_OutputFcn', @spectacles_lpp_classification_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before spectacles_lpp_classification is made visible.
function spectacles_lpp_classification_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to spectacles_lpp_classification (see VARARGIN)
% Choose default command line output for spectacles_lpp_classification
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes spectacles_lpp_classification wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = spectacles_lpp_classification_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in lstPositive.
function lstPositive_Callback(hObject, eventdata, handles)
% hObject handle to lstPositive (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns lstPositive contents as cell array
% contents{get(hObject,'Value')} returns selected item from lstPositive
displayCurrentItem(hObject,handles)
% --- Executes during object creation, after setting all properties.
function lstPositive_CreateFcn(hObject, eventdata, handles)
% hObject handle to lstPositive (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function decision = getDecision(current_image)
global projected_data Positive_mean sgn;
for i = 1:length(current_image)
decision(i) = (sgn(Positive_mean(1),Positive_mean(2))* ...
sgn(projected_data(current_image(i),1),projected_data( ...
current_image(i),2))>0);
end
function displayCurrentItem(hObject,handles)
global dat_a_ height width projected_data;
contents = cellstr(get(hObject,'String'));
current_image = str2double(contents{get(hObject,'Value')});
datalet = dat_a_(current_image,1:end-1);
img = uint8(reshape(datalet,height,width));
imshow(img,'Parent',handles.plotArea2);
if (~isempty(projected_data))
h = get(handles.plotArea1,'Children');
allAvailableTypes = get(h,'type');
[tf,loc]=ismember('text',allAvailableTypes);
if(~tf)
text(projected_data(current_image,1), ...
projected_data(current_image,2), num2str(current_image), ...
'Parent',handles.plotArea1,'FontWeight','bold');
else
set(h(loc),'Position',[projected_data(current_image,1), ...
projected_data(current_image,2)],'String', ...
num2str(current_image));
end
if(getDecision(current_image))
set(handles.result,'String','With Spectacles');
else
set(handles.result,'String','Without Spectacles');
end
end
% --- Executes on selection change in lstTest.
function lstTest_Callback(hObject, eventdata, handles)
% hObject handle to lstTest (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns lstTest contents as cell array
% contents{get(hObject,'Value')} returns selected item from lstTest
displayCurrentItem(hObject,handles)
% --- Executes during object creation, after setting all properties.
function lstTest_CreateFcn(hObject, eventdata, handles)
% hObject handle to lstTest (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global dat_a_ Name_Database height width projected_data;
dat_a_=[];
Name_Database=[];
height=[];
width=[];
projected_data=[];
% Loading the database file
filename = uigetfile('*.mat', 'Select database file');
load(filename);
dat_a_ = data;
%Check if it is loaded correctly
if exist('Database_name','var')
Name_Database = Database_name;
% Get the number of elements loaded
m = size(dat_a_,1);
pos_count = sum(dat_a_(:,end));
neg_count = m - pos_count;
% Show a notification of how many elements are loaded
set(handles.txtloadPrompt,'String',sprintf('%d items loaded',m));
% Calculating amount of training data
% The rule of selection: See whether the positive or the
% negative samples are fewer in amount. Take half of the data from the
% fewer class and an equal number of data from the other class. So,
% the total number of training data = 2 * (1/2) * min(amount of data in
% class with sunglass, amount of data in class without sunglass)
training_size = min(pos_count,neg_count);
test_size = m - training_size;
set(handles.txtSizeTraining,'String',num2str(training_size));
set(handles.txtSizeTesting,'String',num2str(test_size));
else
msgbox('The database could not be loaded');
end
function txtSizeTraining_Callback(hObject, eventdata, handles)
% hObject handle to txtSizeTraining (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of txtSizeTraining as text
% str2double(get(hObject,'String')) returns contents of txtSizeTraining as a double
global dat_a_;
m = size(dat_a_,1);
m_n = str2double(get(hObject, 'String'));
set(handles.txtSizeTesting,'String',m - m_n);
% --- Executes during object creation, after setting all properties.
function txtSizeTraining_CreateFcn(hObject, eventdata, handles)
% hObject handle to txtSizeTraining (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function txtSizeTesting_Callback(hObject, eventdata, handles)
% hObject handle to txtSizeTesting (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of txtSizeTesting as text
% str2double(get(hObject,'String')) returns contents of txtSizeTesting as a double
% --- Executes during object creation, after setting all properties.
function txtSizeTesting_CreateFcn(hObject, eventdata, handles)
% hObject handle to txtSizeTesting (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]李奇杰,杨洪臣.基于局部特征提取人脸识别方法优化研究[J].金融科技时代. 2021,29(04)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/113694525
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)