【情感识别】基于matlab GUI改进的KNN算法语音情感分类识别【含Matlab源码 354期】
一、 KNN算法简介
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
1 定义
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,即由你的“邻居”来推断出你的类别.
2 距离公式
两个样本的距离可以通过如下公式计算,又叫欧式距离
3 KNN算法的步骤
(1)计算已知类别数据集中每个点与当前点的距离;
(2)选取与当前点距离最小的K个点;
(3)统计前K个点中每个类别的样本出现的频率;
(4)返回前K个点出现频率最高的类别作为当前点的预测分类。
4 KNN原理
5 KNN的优缺点
6 KNN性能问题
NN的性能问题也是KNN的缺点之一。使用KNN,可以很容易的构造模型,但在对待分类样本进行分类时,为了获得K近邻,必须采用暴力搜索的方式,扫描全部训练样本并计算其与待分类样本之间的距离,系统开销很大。
二、部分源代码
clc;
close all;
defcolor=[0,0,0];
h_fig=figure(1);
set(h_fig,'Menubar','name','语音情感识别系统 v1.0',...
'Numbertitle','off',...
'color',[0.9023 0.9074 0.8055]);
h_text=uicontrol(h_fig,'style','text','unit','normalized',...
'position',[0.0,0.0,1,1]);
h_text1=uicontrol(h_fig,'style','text','unit','normalized',...
'position',[0.0,0.85,0.25,0.05],'horizontal','left',...
'string','请选择待检测wav文件:','fontsize',10,'ForegroundColor',defcolor);
h_edit1=uicontrol(h_fig,'style','edit','unit','normalized',...
'position',[0.28,0.80,0.5,0.1],'horizontal','left',...
'fontsize',10, 'ForegroundColor',defcolor);
h_push3=uicontrol(h_fig,'style','push','unit','normalized',...
'position',[0.78,0.8,0.08,0.1],'horizontal','left',...
'string','...','fontsize',20,'ForegroundColor',defcolor,'callback','getfile');
h_push1=uicontrol(h_fig,'style','push','unit','normalized',...
'position',[0.4,0.75,0.18,0.05],'horizontal','left',...
'string','确定','fontsize',10,'ForegroundColor',defcolor,'callback','process');
h_text3=uicontrol(h_fig,'style','text','unit','normalized',...
'position',[0,0.5,0.28,0.1],'horizontal','left',...
'string','传统KNN算法获得结果为:','fontsize',10,'ForegroundColor',defcolor);
h_edit2=uicontrol(h_fig,'style','edit','unit','normalized',...
'position',[0.28,0.5,0.3,0.1],'horizontal','left',...
'fontsize',10,'ForegroundColor',defcolor);
[y,fs]=wavread(filename);
sound(y,fs)
X3=mean(FunFre(y,fs));
[X1,X2,X4]=TimePara(y);
k=13;
XA=[Aa Ah As X1];XE=[Ea Eh Es X2];XF=[Fa Fh Fs X3];XZ=[Za Zh Zs X4];
PA=mapzo(XA);PE=mapzo(XE);PF=mapzo(XF);PZ=mapzo(XZ);
a=[PA(1:30);PE(1:30);PF(1:30);PZ(1:30)];
h=[PA(31:60);PE(31:60);PF(31:60);PZ(31:60)];
s=[PA(61:90);PE(61:90);PF(61:90);PZ(61:90)];
x=[PA(91);PE(91);PF(91);PZ(91)];
%%%传统KNN算法
disp('使用传统KNN算法识别结果为:')
A=oushi(a,x);
H=oushi(h,x);
S=oushi(s,x);
set(h_edit2,'style','text');
set(h_edit2,'string',judge(A,H,S,k));
%%%%%%%改进算法
disp('使用改进算法识别结果为:')
B=mean([Aa' Ah' As' Ea' Eh' Es' Fa' Fh' Fs' Za' Zh' Zs']);
A=reshape(B,3,4);
O=reshape([Aa Ah As],30,3);
for i=1:3
for j=1:30
OO(j,i)=(abs(O(j,i)-A(i,1))/A(i,1))^2;
end
end
O=sqrt(sum(OO));
P=reshape([Ea Eh Es],30,3);
for i=1:3
for j=1:30
PP(j,i)=(abs(P(j,i)-A(i,2))/A(i,2))^2;
end
end
P=sqrt(sum(PP));
Q=reshape([Fa Fh Fs],30,3);
for i=1:3
for j=1:30
QQ(j,i)=(abs(Q(j,i)-A(i,3))/A(i,3))^2;
end
end
Q=sqrt(sum(QQ));
R=reshape([Za Zh Zs],30,3);
for i=1:3
for j=1:30
RR(j,i)=(abs(R(j,i)-A(i,4))/A(i,4))^2;
end
end
R=sqrt(mean(RR));
X=[O' P' Q' R'];
for i=1:3
for j=1:4
V(i,j)=(sum(X(i,:))-X(i,j))/sum(X(i,:));
end
function [str]=judge(A,H,S,k)
f=[A H S]; %将欧距三个个矩阵合并
g=[A H];
d=numel(f);
c=[1:d]; %用来存放排序后的欧距
c=lowtohigh(f,d);
num1=0; %用来记录被判x类的次数
num2=0; %用来记录被判y类的次数
num3=0;
for i=1:k
for j=1:d
if (c(i)==f(j))
if j<=numel(A) %如果选中的欧距出自x类
num1=num1+1;
elseif j>numel(g) %如果选中的欧距出自y类
num3=num3+1;
else
num2=num2+1;
end
end
j=j+1;
end
i=i+1;
end
if(num1>num2&num1>num3)
w=0;
elseif(num2>num1&num2>num3)
w=1;
elseif(num3>num1&num3>num2)
w=2;
end
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/113922259
- 点赞
- 收藏
- 关注作者
评论(0)