【图像隐写】基于matlab高斯模型JPEG图像隐写【含Matlab源码 367期】
【摘要】
一、获取代码方式
获取代码方式1: 完整代码已上传我的资源:【图像隐写】基于matlab高斯模型JPEG图像隐写【含Matlab源码 367期】
获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付...
一、获取代码方式
获取代码方式1:
完整代码已上传我的资源:【图像隐写】基于matlab高斯模型JPEG图像隐写【含Matlab源码 367期】
获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、部分源代码
% This example demonstrates how to use the MG embedding function
clc
clear all
close all
% Read the input cover image
Cover = double(imread ('1.pgm'));
% Set the payload to 0.4 bpp
Payload = 0.4;
% MG embedding
tStart = tic;
[Stego, pChange, ChangeRate] = MG( Cover, Payload );
tEnd = toc(tStart);
fprintf('MG embedding is done in: %f (sec)\n',tEnd);
%%
figure;
imshow (Cover,[]);
title ('Cover image');
function [Stego, pChange, ChangeRate] = MG ( Cover, Payload )
% -------------------------------------------------------------------------
% Multivariate Gaussian Embedding | September 2015 | version 1.0
% -------------------------------------------------------------------------
% INPUT:
% - Cover - Path to the cover image or the cover image itself.
% - Payload - Embedding payload in bits per pixel (bpp).
% OUTPUT:
% - Stego - Resulting image with embedded payload
% - pChange - Embedding change probabilities.
% - ChangeRate - Average number of changed pixels
% -------------------------------------------------------------------------
% Copyright (c) 2015 DDE Lab, Binghamton University, NY.
% All Rights Reserved.
% -------------------------------------------------------------------------
% Permission to use, copy, modify, and distribute this software for
% educational, research and non-profit purposes, without fee, and without a
% written agreement is hereby granted, provided that this copyright notice
% appears in all copies. The program is supplied "as is," without any
% accompanying services from DDE Lab. DDE Lab does not warrant the
% operation of the program will be uninterrupted or error-free. The
% end-user understands that the program was developed for research purposes
% and is advised not to rely exclusively on the program for any reason. In
% no event shall Binghamton University or DDE Lab be liable to any party
% for direct, indirect, special, incidental, or consequential damages,
% including lost profits, arising out of the use of this software. DDE Lab
% disclaims any warranties, and has no obligations to provide maintenance,
% support, updates, enhancements or modifications.
% -------------------------------------------------------------------------
% Contact: vsedigh1@binghamton.edu | fridrich@binghamton.edu
% September 2015
% http://dde.binghamton.edu/download/
% -------------------------------------------------------------------------
% References:
% [1] - J. Fridrich and J. Kodovsky. Multivariate Gaussian model for
% designing additive distortion for steganography. Proc. IEEE, ICASSP,
% Vancouver, Canada, May 26-31, 2013.
% -------------------------------------------------------------------------
% Read and convert the input cover image into double format
if ischar( Cover )
Cover = double( imread(Cover) );
else
Cover = double( Cover );
end
% Compute Variance and do the flooring for numerical stability
Variance = VarianceEstimation(Cover);
Variance(Variance< 1) = 1;
% Compute Fisher information and smooth it
FisherInformation = 1./Variance.^2;
% Compute embedding change probabilities and execute embedding
FI = FisherInformation(:)';
% Ternary embedding change probabilities
beta = TernaryProbs(FI,Payload);
% Simulate embedding
Stego = Cover;
beta = 2 * beta;
r = rand(1,numel(Cover));
ModifPM1 = (r < beta); % Cover elements to be modified by +-1
r = rand(1,numel(Cover));
Stego(ModifPM1) = Cover(ModifPM1) + 2*(round(r(ModifPM1))) - 1; % Modifying X by +-1
Stego(Stego>255) = 253; % Taking care of boundary cases
Stego(Stego<0) = 2;
ChangeRate = sum(ModifPM1(:))/numel(Cover); % Computing the change rate
pChange = reshape(beta/2,size(Cover));
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/113943649
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)