【人脸表情识别】基于matlab LBP+LPQ算法融合人脸表情识别【含Matlab源码 432期】
一、LBP简介
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;
1 LBP特征的描述
原始的LBP算子定义为在33的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,33邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:
LBP的改进版本:
原始的LBP提出后,研究人员不断对其提出了各种改进和优化。
(1)圆形LBP算子:
基本的 LBP 算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala 等对 LBP 算子进行了改进,将 3×3 邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R 的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;
(2)LBP旋转不变模式
从 LBP 的定义可以看出,LBP 算子是灰度不变的,但却不是旋转不变的。图像的旋转就会得到不同的 LBP值。
Maenpaa等人又将 LBP 算子进行了扩展,提出了具有旋转不变性的 LBP 算子,即不断旋转圆形邻域得到一系列初始定义的 LBP 值,取其最小值作为该邻域的 LBP 值。
图 2.5 给出了求取旋转不变的 LBP 的过程示意图,图中算子下方的数字表示该算子对应的 LBP 值,图中所示的 8 种 LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的 LBP 值为 15。也就是说,图中的 8 种 LBP 模式对应的旋转不变的 LBP 模式都是00001111。
(3)LBP等价模式
一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生2P2P种模式。很显然,随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。例如:5×5邻域内20个采样点,有220220=1,048,576种二进制模式。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。
为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)(这是我的个人理解,不知道对不对)。
通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P2P种减少为 P ( P-1)+2种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为58种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。
2 LBP特征用于检测的原理
显而易见的是,上述提取的LBP算子在每个像素点都可以得到一个LBP“编码”,那么,对一幅图像(记录的是每个像素点的灰度值)提取其原始的LBP算子之后,得到的原始LBP特征依然是“一幅图片”(记录的是每个像素点的LBP值)。
从上图可以看出LBP对光照具有很强的鲁棒性
LBP的应用中,如纹理分类、人脸分析等,一般都不将LBP图谱作为特征向量用于分类识别,而是采用LBP特征谱的统计直方图作为特征向量用于分类识别。
因为,从上面的分析我们可以看出,这个“特征”跟位置信息是紧密相关的。直接对两幅图片提取这种“特征”,并进行判别分析的话,会因为“位置没有对准”而产生很大的误差。后来,研究人员发现,可以将一幅图片划分为若干的子区域,对每个子区域内的每个像素点都提取LBP特征,然后,在每个子区域内建立LBP特征的统计直方图。如此一来,每个子区域,就可以用一个统计直方图来进行描述;整个图片就由若干个统计直方图组成;
例如:一幅100100像素大小的图片,划分为1010=100个子区域(可以通过多种方式来划分区域),每个子区域的大小为1010像素;在每个子区域内的每个像素点,提取其LBP特征,然后,建立统计直方图;这样,这幅图片就有1010个子区域,也就有了1010个统计直方图,利用这1010个统计直方图,就可以描述这幅图片了。之后,我们利用各种相似性度量函数,就可以判断两幅图像之间的相似性了;
3 对LBP特征向量进行提取的步骤
(1)首先将检测窗口划分为16×16的小区域(cell);
(2)对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数,即得到该窗口中心像素点的LBP值;
(3)然后计算每个cell的直方图,即每个数字(假定是十进制数LBP值)出现的频率;然后对该直方图进行归一化处理。
(4)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量;
然后便可利用SVM或者其他机器学习算法进行分类了。
LPQ(Local Phase Quantization)算法的原理是假设平滑函数h(x)中心对称,则其傅里叶变换为H(u),对所有H(u)≥0有∠G(u)= ∠F(u),其中F(u)和G(u)分别为原图像和平滑后图像的傅里叶变换,因而在H(u)≥0条件下,图像对平滑有不变性。
为使H(u)≥0,a取为不超过第一个过零点的频率点,其值为a=1/winSize(winSize为输入参数)。分别用f(x)对u1=(a,0),u2=(0,a),u3=(a,a),u4=(a,-a)四个点作STFT,然后分别把四个点的实部和虚部分开,形成一个向量W=[Re{F(u1,x)},Re{F(u2,x)},Re{F(u3,x)},Re{F(u4,x)},Im{F(u1,x)},Im{F(u2,x)},Im{F(u3,x)},Im{F(u4,x)}]T 。
最终得到LPQ变换即为Fx=W*fx。然后对参数进行统计分析,若参数是相关的,则用奇异值分解去相关并且量化。
二、部分源代码
%日期:2013/7/3
%首先对jaffe表情图片进行LPB+LPQ特征提取,最后放入支持向量机中分类训练,统计出训练和测试的精度
clc
clear
c=[];
addpath train;
addpath test;
mapping=getmapping(8,'u2');%LBP映射
W=[2,1,1,1,1,1,2; ...
2,4,4,1,4,4,2; ...
1,1,1,0,1,1,1; ...
0,1,1,0,1,1,0; ...
0,1,1,1,1,1,0; ...
0,1,1,2,1,1,0; ...
0,1,1,1,1,1,0];
%提取SU表情的特征
for i=1:20
B=imread(strcat('train\','SU\',num2str(i),'.tiff')); %读取SU类别的表情照片
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];%LPB和LPQ特征融合
disp(sprintf('完成SU表情第%i张图片的特征提取',i));
end
%%%以下注释一样
%提取SA表情的特征
for i=1:21
B=imread(strcat('train\','SA\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];%LPB和LPQ特征融合
disp(sprintf('完成SA表情第%i张图片的特征提取',i));
end
%提取NE表情的特征
for i=1:20
B=imread(strcat('train\','NE\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成NE表情第%i张图片的小波特征提取',i));
end
for i=1:22
B=imread(strcat('train\','HA\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];%LPB和LPQ特征融合
disp(sprintf('完成HA表情第%i张图片的小波特征提取',i));
end
for i=1:22
B=imread(strcat('train\','FE\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成FE表情第%i张图片的小波特征提取',i));
end
for i=1:19
B=imread(strcat('train\','DI\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成DI表情第%i张图片的小波特征提取',i));
end
for i=1:20
B=imread(strcat('train\','AN\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成AN表情第%i张图片的小波特征提取',i));
end
d=[];
for i=1:10
B=imread(strcat('test\','SU\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
d=[d;a];
disp(sprintf('完成SU表情测试集第%i张图片的小波特征提取',i));
end
verbose = 0;
nbclass=7;
[xsup,w,b,nbsv]=svmmulticlassoneagainstall(P_train,train_label,nbclass,c,lambda,kernel,kerneloption,verbose); %使用支持向量机进行训练获得支持向量
[ypred1,maxi] = svmmultival(P_train,xsup,w,b,nbsv,kernel,kerneloption); %训练集测试
[ypred2,maxi] = svmmultival(P_test,xsup,w,b,nbsv,kernel,kerneloption); %测试集测试
CC1=ypred1-train_label;
n1=length(find(CC1==0));
CC2=ypred2-test_label;
n2=length(find(CC2==0));
Accuracytrain=n1/size(train_label,1) %统计训练精度
Accuracytest=n2/size(test_label,1) %统计测试精度
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
三、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/114309101
- 点赞
- 收藏
- 关注作者
评论(0)