【雷达图像】SAR合成孔径雷达成像及处理【含Matlab源码 307期】
【摘要】
一、获取代码方式
获取代码方式1: 完整代码已上传我的资源:【雷达图像】SAR合成孔径雷达成像及处理【含Matlab源码 307期】
获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博...
一、获取代码方式
获取代码方式1:
完整代码已上传我的资源:【雷达图像】SAR合成孔径雷达成像及处理【含Matlab源码 307期】
获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、简介
三、部分源代码
clear all;
%======================================================================
%%% (I) parameters' definition
%======================================================================
c=3e+8; % speed of light
pi=3.1415926; % pi
j00=sqrt(-1); % square root of -1
res_a=2; % required azimuth resolution
k_r=1.2; % range factor
Ra=4000.; % radar working distance
va=70.; % radar/platform forward velocity
fc=3.e+9; % carrier frequency
FsFactor = 1.0;
theta=90*pi/180; % squint angle
%======================================================================
lamda=c/fc; % wavelength
Br=k_r*c/2./res_r; % required transmitted bandwidth
Fs=Br*FsFactor; % A/D sampling rate
bin_r=c/2./Fs; % range bin
Kr=Br/Tp; % range chirp rate
La=Ra*k_a*lamda/2/res_a; % required synthetic aperture length
Ta=La/va; % required synthetic aperture time
fdc=2*va*cos(theta)/lamda; % doppler centriod
fdr=-2*(va*sin(theta)).^2/lamda/Ra; % doppler rate
Bd=abs(fdr)*Ta; % doppler bandwidth
prf=round(Bd*2); % PRF
%======================================================================
%%%(II) echo return modelling (point target)
%======================================================================
na=fix(Ta*prf/2); % azimuth sampling number
ta=-na:na;
ta=ta/prf; % slow time along azimuth
xa=va*ta-Ra*cos(theta); % azimuth location along flight track
Na=2*fix(na);
%x0=[ 0 0 0 0 0 ]; % define multi points if you want
%R0=[-20 -10 0 10 20 ]; % x0: azimuth location (positive towards forward velocity)
% R0: slant range location (positive towards far range)
x0=[ 0 0 ]; R0=[ 0 10 ]; % only one point
Npt_num = length(x0);
ra=zeros(Npt_num, length(xa)); % calculate every point target's slant range history
for i=1:Npt_num
ra(i,:)=sqrt((Ra*sin(theta)+R0(i)).^2+(xa+x0(i)).^2);
end
rmax=max(max(ra)); % max. slant range
rmin=min(min(ra)); % min. slant range
rmc=fix((rmax-rmin)/bin_r); % range migration, number
rg=0*ra; % initialize
rg=fix((ra-rmin)/bin_r+1); % range gate index caused by range migration
rgmax=max(max(rg));
rgmin=min(min(rg));
nr=round(Tp*Fs); % samples of a pluse
tr=1:fix(nr)+1;
tr=tr/Fs-Tp/2; % fast time within a pluse duration
Nr=nr+rgmax;
%======================================================================
%%%(II) echo return modelling (point target)
%======================================================================
sig=zeros(Na,Nr);
for i=1:Na
for k=1:Npt_num
sig(i,rg(k,i):rg(k,i)+nr)=sig(i,rg(k,i):rg(k,i)+nr)+exp(-j00*4*pi/lamda*ra(k,i))*exp(-j00*pi*Kr*(tr).^2);
end
end
%%% parameters' definition
c=3e+8; % speed of light
pi=3.1415926;
j=sqrt(-1);
Tp=1.e-6; % transmitted pulse width
fc=1.e+9; % carrier frequency
Br=50.e+6; % transmitted bandwidth
Fs=200.e+6; % A/D sample rate
kr=Br/Tp; % range chirp rate
Nr=Tp*Fs;
Ni=1:Nr;
tr=(Ni-Nr/2)*Tp/Nr;
%===============================
%Chirp pulse echo from point A
%===============================
sig_point0 = exp(j*pi*kr*(tr).^2);
%===============================
%Chirp pulse echo from point B
%===============================
dr=3; dr_t=2*dr/c; dN=dr_t*Fs;
sig_point1 = exp(j*pi*kr*(tr-dr_t).^2);
sig_0 = zeros(1, 3*Nr); sig_1 = sig_0; sum_sig = sig_0;
sig_0(Nr+1:2*Nr)=sig_point0;
sig_1(Nr+dN+1:2*Nr+dN)=sig_point1;
%===============================
% Summary echo signal of A and B
%===============================
sum_sig = sig_0 + sig_1;
figure;
subplot(4,1,1); plot(real(sig_0));
subplot(4,1,2); plot(real(sig_1));
subplot(4,1,3); plot(real(sum_sig));
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
四、运行结果
五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 沈再阳.精通MATLAB信号处理[M].清华大学出版社,2015.
[2]高宝建,彭进业,王琳,潘建寿.信号与系统——使用MATLAB分析与实现[M].清华大学出版社,2020.
[3]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/113824675
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)