【图像增强】基于matlab PSO寻优ACE算法图像增强【含Matlab源码 088期】

举报
海神之光 发表于 2022/05/29 04:41:36 2022/05/29
【摘要】 一、图像增强技术简介 1图像增强 图像增强是对图像的某些特征,如边缘、轮廓、对比度等进行强调或锐化,以便于显示、观察或进一步分析与处理。通过对图像的特定加工,将被处理的图像转化为对具体应用来说视觉质量和...

一、图像增强技术简介

1图像增强
图像增强是对图像的某些特征,如边缘、轮廓、对比度等进行强调或锐化,以便于显示、观察或进一步分析与处理。通过对图像的特定加工,将被处理的图像转化为对具体应用来说视觉质量和效果更“好”或更“有用”的图像。
图像增强是最基本最常用的图像处理技术,常用于其他图像处理的预处理阶段。
在这里插入图片描述
(1)高通平滑、低通锐化;平滑模糊、锐化突出图像细节
(2)滤波器还有带通、带阻等形式
(3)根据噪声(椒盐噪声、高斯噪声…)的不同,选用不同的滤波
(4)邻域有4-邻域、对角邻域、8-邻域,相对应的有邻接,即空间上相邻、像素灰度相似
(5)图像边缘处理:忽略不处理、补充、循环使用
(6)目前尚未图像处理大多基于灰度图像
将ace增强后的图像信息熵与图像标准差的乘积作为目标函数, ace的增益因子a作为待寻优的变量;
使用pso算法对ace的增益因子a进行寻优,并返回最优的增益因子;
将最优增益代入ace算法中,对图像进行增强;
采用引导滤波对增强后的图像进行降噪,提高可视化效果;

二、源代码

%% PSO_ACE
% date: 2020_08
% Author: X
% function: 图像增强,(1) PSO优化ACE增益因子 (2) 引导滤波降噪
 
%% 初始化
addpath(genpath(pwd));
 
clear;
clc;
close all;
warning('off')
 
%% 定义全局变量
global meanimg stdimg I img
 
I = rgb2ycbcr(imread('test2.jpg'));% 将图片转换到ycbcr空间
img = double(I(:,:,1));
 
% 求局部均值
filter = fspecial('average',3);
meanimg = imfilter(img,filter);
% figure;imshow(meanimg/255,[]);
 
% 求局部标准差
stdimg = stdfilt(img);
% temp = stdfilt(img(:,:,1));
 
%% PSO 寻优
a_range=[0,1]; % 参数x变化范围(这里寻优的是ACE算法中的增益因子a)
range = [a_range];
Max_V = 0.2*(a_range(:,2)-a_range(:,1)); % 最大速度取变化范围的10%~20%
n=1; % 待优化函数的维数
psoparams = [10 200 10 2 2 0.8 0.2 1500 1e-25 200 NaN 0 0]; % 参数配置,详细查看pso工具箱使用文档
Bestarray = pso_Trelea_vectorized('obj_func', n, Max_V, range, 1, psoparams); % 调用PSO寻优,返回最优参数以及最优函数值
 
%% 输出增强后的图像(将获得增益因子代入ACE)
D = mean(meanimg(:));
c = Bestarray(1)*D./(stdimg);
c(c>10) = 3;
result = meanimg + c.*(img - meanimg);
MIN = min(min(result));
MAX = max(max(result));
result = (result - MIN)/(MAX - MIN);
result = adapthisteq(result);
I(:,:,1) = result*255;
result_img = ycbcr2rgb(I);
figure;imshow(result_img);
title('PSO\_ACE');
 
%% 引导滤波降噪
[r,c,b]=size(I);
x = reshape(result_img,[r*c b]);
x = compute_mapping(x,'PCA',1); % 对原图进行PCA降维
guidance = reshape(x, r, c)/255; % 获得引导图像
result_img = double(result_img)/255;
r = 5; % 滤波半径
eps = 0.005; % 滤波正则化参数
for i = 1:3
    result_img_GD(:,:,i) =  guidedfilter(guidance, result_img(:,:,i), r, eps); % 引导滤波
end
figure;imshow(result_img_GD,[]);
title('PSO\_ACE\_GD'); % 显示滤波后的图像

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/112424551

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。