【图像评价】基于matlab无参考图像质量评价NIQE【含Matlab源码 681期】

举报
海神之光 发表于 2022/05/29 05:09:35 2022/05/29
【摘要】 一、无参考图像质量评价NIQE简介 理论知识参考:通用型无参考图像质量评价算法综述 二、部分源代码 function [mu_prisparam cov_prisparam] = estimat...

一、无参考图像质量评价NIQE简介

理论知识参考:通用型无参考图像质量评价算法综述

二、部分源代码

function  [mu_prisparam cov_prisparam]  = estimatemodelparam(folderpath,...
    blocksizerow,blocksizecol,blockrowoverlap,blockcoloverlap,sh_th)
    
% Input
% folderpath      - Folder containing the pristine images
% blocksizerow    - Height of the blocks in to which image is divided
% blocksizecol    - Width of the blocks in to which image is divided
% blockrowoverlap - Amount of vertical overlap between blocks
% blockcoloverlap - Amount of horizontal overlap between blocks
% sh_th           - The sharpness threshold level
%Output
%mu_prisparam  - mean of multivariate Gaussian model
%cov_prisparam - covariance of multivariate Gaussian model

% Example call

%[mu_prisparam cov_prisparam] = estimatemodelparam('pristine',96,96,0,0,0.75);


%----------------------------------------------------------------
% Find the names of images in the folder
current = pwd;
cd(sprintf('%s',folderpath))
names        = ls;
names        = names(3:end,:);%
cd(current)
% ---------------------------------------------------------------
%Number of features
% 18 features at each scale
featnum      = 18;
% ---------------------------------------------------------------
% Make the directory for storing the features
mkdir(sprintf('local_risquee_prisfeatures'))
% ---------------------------------------------------------------
% Compute pristine image features
for itr = 1:size(names,1)
itr
im               = imread(sprintf('%s\\%s',folderpath,names(itr,:)));
if(size(im,3)==3)
im               = rgb2gray(im);
end
im               = double(im);             
[row col]        = size(im);
block_rownum     = floor(row/blocksizerow);
block_colnum     = floor(col/blocksizecol);
im               = im(1:block_rownum*blocksizerow, ...
                   1:block_colnum*blocksizecol);               
window           = fspecial('gaussian',7,7/6);
window           = window/sum(sum(window));
scalenum         = 2;
warning('off')

feat = [];


for itr_scale = 1:scalenum

    
mu                       = imfilter(im,window,'replicate');
mu_sq                    = mu.*mu;
sigma                    = sqrt(abs(imfilter(im.*im,window,'replicate') - mu_sq));
structdis                = (im-mu)./(sigma+1);
              
               
               
feat_scale               = blkproc(structdis,[blocksizerow/itr_scale blocksizecol/itr_scale], ...
                           [blockrowoverlap/itr_scale blockcoloverlap/itr_scale], ...
                           @computefeature);
feat_scale               = reshape(feat_scale,[featnum ....
                           size(feat_scale,1)*size(feat_scale,2)/featnum]);
feat_scale               = feat_scale';


if(itr_scale == 1)
sharpness                = blkproc(sigma,[blocksizerow blocksizecol], ...
                           [blockrowoverlap blockcoloverlap],@computemean);
sharpness                = sharpness(:);
end


feat                     = [feat feat_scale];

im =imresize(im,0.5);

end
function  quality = computequality(im,blocksizerow,blocksizecol,...
    blockrowoverlap,blockcoloverlap,mu_prisparam,cov_prisparam)
   
% Input1
% im              - Image whose quality needs to be computed
% blocksizerow    - Height of the blocks in to which image is divided
% blocksizecol    - Width of the blocks in to which image is divided
% blockrowoverlap - Amount of vertical overlap between blocks
% blockcoloverlap - Amount of horizontal overlap between blocks
% mu_prisparam    - mean of multivariate Gaussian model
% cov_prisparam   - covariance of multivariate Gaussian model

% For good performance, it is advisable to use make the multivariate Gaussian model
% using same size patches as the distorted image is divided in to

% Output
%quality      - Quality of the input distorted image

% Example call
%quality = computequality(im,96,96,0,0,mu_prisparam,cov_prisparam)

% ---------------------------------------------------------------
%Number of features
% 18 features at each scale
featnum      = 18;
%----------------------------------------------------------------
%Compute features
if(size(im,3)==3)
im               = rgb2gray(im);
end
im               = double(im);                
[row col]        = size(im);
block_rownum     = floor(row/blocksizerow);
block_colnum     = floor(col/blocksizecol);

im               = im(1:block_rownum*blocksizerow,1:block_colnum*blocksizecol);              
[row col]        = size(im);
block_rownum     = floor(row/blocksizerow);
block_colnum     = floor(col/blocksizecol);
im               = im(1:block_rownum*blocksizerow, ...
                   1:block_colnum*blocksizecol);               
window           = fspecial('gaussian',7,7/6);
window           = window/sum(sum(window));
scalenum         = 2;
warning('off')

feat             = [];


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/115419488

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。