【股价预测】基于matlab SVM股票价格预测【含Matlab源码 180期】
一、获取代码方式
获取代码方式1:
完整代码已上传我的资源:【股价预测】基于matlab SVM股票价格预测【含Matlab源码 180期】
获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、SVM简介
机器学习的一般框架:
训练集 => 提取特征向量 => 结合一定的算法(分类器:比如决策树、KNN)=>得到结果
1 SVM定义
支持向量机(support vector machines,SVM)是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM 的目的就是想要画出一条线,以 “最好地” 区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。SVM 适合中小型数据样本、非线性、高维的分类问题。
SVM 最早是由 Vladimir N. Vapnik 和 Alexey Ya. Chervonenkis 在1963年提出,目前的版本(soft margin)是由 Corinna Cortes 和 Vapnik 在1993年提出,并在1995年发表。深度学习(2012)出现之前,SVM 被认为机器学习中近十几年来最成功,表现最好的算法。
2 SVM 基本概念
将实例的特征向量(以二维为例)映射为空间中的一些点,如下图的实心点和空心点,它们属于不同的两类。SVM 的目的就是想要画出一条线,以“最好地”区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。
Q1:能够画出多少条线对样本点进行区分?
答:线是有无数条可以画的,区别就在于效果好不好,每条线都可以叫做一个划分超平面。比如上面的绿线就不好,蓝线还凑合,红线看起来就比较好。我们所希望找到的这条效果最好的线就是具有 “最大间隔的划分超平面”。
Q2:为什么要叫作“超平面”呢?
答:因为样本的特征很可能是高维的,此时样本空间的划分就不是一条线了。
Q3:画线的标准是什么?/ 什么才叫这条线的效果好?/ 哪里好?
答:SVM 将会寻找可以区分两个类别并且能使间隔(margin)最大的划分超平面。比较好的划分超平面,样本局部扰动时对它的影响最小、产生的分类结果最鲁棒、对未见示例的泛化能力最强。
Q4:间隔(margin)是什么?
答:对于任意一个超平面,其两侧数据点都距离它有一个最小距离(垂直距离),这两个最小距离的和就是间隔。比如下图中两条虚线构成的带状区域就是 margin,虚线是由距离中央实线最近的两个点所确定出来的(也就是由支持向量决定)。但此时 margin 比较小,如果用第二种方式画,margin 明显变大也更接近我们的目标。
Q5:为什么要让 margin 尽量大?
答:因为大 margin 犯错的几率比较小,也就是更鲁棒啦。
Q6:支持向量是什么?
答:从上图可以看出,虚线上的点到划分超平面的距离都是一样的,实际上只有这几个点共同确定了超平面的位置,因此被称作 “支持向量(support vectors)”,“支持向量机” 也是由此来的。
三、部分源代码
clear;
clc;
%load financial data of the stock price of Apple company
%The data is from Nov 18 1982-Nov 18 2012
%The data contains six collums:Open, High, Low, Close, Volume, Adj Close
sh = dlmread('yahoo.csv');
%The data needs to flip because the data is from latest to earliest.
sh = flipdim(sh,1);
%extract data
[m,n] = size(sh);
ts = sh(2:m,1);
tsx = sh(1:m-1,:);
original = ts(length(sh)*0.7+1:end,:);
% Draw the original graphic of the stock price
figure;
plot(ts,'LineWidth',1);
title('Yahoo Stock Price(1996.4.12-2012.11.16) before mapping','FontSize',12);
grid on;
fprintf('Plot the stock price before mapping.\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%data preprocessing
ts = ts';
tsx = tsx';
% mapminmax is an mapping function in matlab
%Use mapminmax to do mapping
[TS,TSps] = mapminmax(ts);
% The scale of the data from 1 to 2
TSps.ymin = 1;
TSps.ymax = 2;
%normalization
[TS,TSps] = mapminmax(ts,TSps);
% plot the graphic of the stock price after mapping
figure;
plot(TS,'LineWidth',1);
title('Yahoo Stock price after mapping','FontSize',12);
grid on;
fprintf('\nPlot the stock price after mapping.\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
% Transpose the data in order to meet the requirement of libsvm
fprintf('\n Initializing.......\n');
TS = TS';
[TSX,TSXps] = mapminmax(tsx);
TSXps.ymin = 1;
TSXps.ymax = 2;
[TSX,TSXps] = mapminmax(tsx,TSXps);
TSX = TSX';
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
四、运行结果
五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
[4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
[5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/113408182
- 点赞
- 收藏
- 关注作者
评论(0)