【图像分割】基于matlab GAC水平集方法图像分割【含Matlab源码 389期】
【摘要】
一、获取代码方式
获取代码方式1: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
获取代码方式2: 完整代码已上传我的资源:【图像分割】基于matlab GAC水平集方法图像分割...
一、获取代码方式
获取代码方式1:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
获取代码方式2:
完整代码已上传我的资源:【图像分割】基于matlab GAC水平集方法图像分割【含Matlab源码 389期】
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、图像分割简介
理论知识参考:【基础教程】基于matlab图像处理图像分割【含Matlab源码 191期】
三、部分源代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
clc;
%读图像并将rgb图像转化为灰度图象,为了节省cpu时间,将图像变小为原来大小的1/2
im=imread('3.bmp');
im=rgb2gray(im);
im=double(im);
im = imresize( im, 0.5 );
figure(1);imshow(uint8(im));
[nrow,ncol]=size(im);
%为了计算函数g,先对图像作预平滑。
J= gauss( im,3,2 ); %guassian平滑
%求图像梯度模值
J_x = (J(:,[2:ncol ncol])-J(:,[1 1:ncol-1]))/2;
J_y = (J([2:nrow nrow],:)-J([1 1:nrow-1],:))/2;
grad_im = (J_x.^2 + J_y.^2).^0.5;
%计算边缘函数g
kk=5; %contrast parameter
g=1./(1+(grad_im/kk).^2);
%初始化曲线为一个图,初始化u为带符号距离函数
curvIndex=zeros(5*nrow*ncol,2);
curvImag=zeros([nrow,ncol]);
num=0;
for i = 2 : nrow - 1
for j = 2 : ncol - 1
if ((i==8|i==nrow-8)&(j>=8&j<=(ncol-8)))|((i>=8&i<=(nrow-8))&(j==8|j==ncol-8))
num=num+1;
InitCurvImag(i,j)=255;
curvIndex(num,1)=i;
curvIndex(num,2)=j;
for k=1:num-1 %check is it the last point of the curve
if curvIndex(k,1)==i & curvIndex(k,2)==j
num=num-1;break
end
end
end
end
end
u = zeros(nrow,ncol);
dist=zeros(1,num);
for j=1:ncol
for i=1:nrow
for k=1:num
dist(k)=sqrt((i-curvIndex(k,1)).^2+(j-curvIndex(k,2)).^2);
end
u(i,j)=min(dist);
if i>8&i<(nrow-8)&j>8&j<(ncol-8)
u(i,j)=-u(i,j);
end
end
end
%将当前曲线加入到原图像中,然后写入文件
newim=createimage(im,u,0);
figure(2);imshow(uint8(newim));
%选定迭代步长
delta_t=20;
%选定常数速度
c=0.2;
%迭代开始
for iterations=1:4000
%%% compute Roe upwind gradient
u_x_e = u(:,[2:ncol,ncol])-u;
u_y_e = (u([2:nrow,nrow],:)+u([2:nrow,nrow],[2:ncol,ncol])-u([1 1:nrow-1],:)-u([1 1:nrow-1],[2:ncol ncol]))/4;
u_G_e = sqrt(u_x_e .^2+u_y_e .^2);
g_e = 0.5*(g(:,[2:ncol,ncol])+g);
Term_e = g_e.*u_x_e./(u_G_e+eps);
u_x_w = u-u(:,[1 1:ncol-1]);
u_y_w = (u([2:nrow,nrow],:)+u([2:nrow,nrow],[1 1:ncol-1])-u([1,1:nrow-1],:)-u([1,1:nrow-1],[1 1:ncol-1]))/4;
u_G_w = sqrt(u_x_w.^2+u_y_w.^2);
g_w = 0.5*(g(:,[1 1:ncol-1])+g);
Term_w = g_w.*u_x_w./(u_G_w+eps);
u_y_s = u([2:nrow,nrow],:)-u;
u_x_s = (u(:,[2:ncol,ncol])+u([2:nrow,nrow],[2:ncol,ncol])-u(:,[1 1:ncol-1])-u([2:nrow,nrow],[1 1:ncol-1]))/4;
u_G_s = sqrt(u_y_s.^2+ u_x_s.^2);
g_s = 0.5*(g([2:nrow,nrow],:)+g);
Term_s = g_s.*u_y_s./(u_G_s+eps);
u_y_n = u-u([1 1:nrow-1],:);
u_x_n = (u(:,[2:ncol,ncol])+u([1 1:nrow-1],[2:ncol,ncol])-u(:,[1 1:ncol-1])-u([1 1:nrow-1],[1 1:ncol-1]))/4;
u_G_n = sqrt(u_y_n.^2+u_x_n.^2);
g_n = 0.5*(g([1,1:nrow-1],:)+g);
Term_n = g_n.*u_y_n./(u_G_n+eps);
function Ig=gauss(I,ks,sigma2)
%private function: gauss (by Guy Gilboa):
% Ig=gauss(I,ks,sigma2)
% ks - kernel size (odd number)
% sigma2 - variance of Gaussian
[Ny,Nx]=size(I);
hks=(ks-1)/2; % half kernel size
if (Ny<ks) % 1d convolutin
x=(-hks:hks);
flt=exp(-(x.^2)/(2*sigma2)); % 1D gaussian
flt=flt/sum(sum(flt)); % normalize
% expand
x0=mean(I(:,1:hks)); xn=mean(I(:,Nx-hks+1:Nx));
eI=[x0*ones(Ny,ks) I xn*ones(Ny,ks)];
Ig=conv(eI,flt);
Ig=Ig(:,ks+hks+1:Nx+ks+hks); % truncate tails of convolution
else
%% 2-d convolution
x=ones(ks,1)*(-hks:hks); y=x';
flt=exp(-(x.^2+y.^2)/(2*sigma2)); % 2D gaussian
flt=flt/sum(sum(flt)); % normalize
% expand
if (hks>1)
xL=mean(I(:,1:hks)')'; xR=mean(I(:,Nx-hks+1:Nx)')';
else
xL=I(:,1); xR=I(:,Nx);
end
eI=[xL*ones(1,hks) I xR*ones(1,hks)];
if (hks>1)
xU=mean(eI(1:hks,:)); xD=mean(eI(Ny-hks+1:Ny,:));
else
xU=eI(1,:); xD=eI(Ny,:);
end
四、运行结果
五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]赵勇,方宗德,庞辉,王侃伟.基于量子粒子群优化算法的最小交叉熵多阈值图像分割[J].计算机应用研究. 2008,(04)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/114077462
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)