【图像处理】基于matlab Hough变换人眼虹膜定位【含Matlab源码 387期】
【摘要】
一、数字图像处理简介
图像处理基础教程链接 1 【基础教程】基于matlab图像处理(表示方法+数据结构+基本格式+类型转换+读取+点运算+代数运算)【含Matlab源码 834期】 2 【基础教程】基...
一、数字图像处理简介
图像处理基础教程链接
1 【基础教程】基于matlab图像处理(表示方法+数据结构+基本格式+类型转换+读取+点运算+代数运算)【含Matlab源码 834期】
2 【基础教程】基于matlab图像处理(读写+显示+运算+转换+变换+增强+滤波+分析+统计)【含Matlab源码 144期】
3 【基础教程】基于matlab图像增强+复原+分割【含Matlab源码 056期】
二、部分源代码
clear all;
close all;
i=imread('yanjing.bmp');
imshow(i);
iii=i;
%把输入图象二值化,用canny算法返回阈值
sigma=3.0;
thresh=[0.03,0.09];
bw_1=i>70;
edgerm=edge(bw_1,'canny',thresh,sigma);
figure,imshow(edgerm);
t1=280;
s=0;
while t1>10
t2=1;
while t2<310
%查找第一个边缘点
if edgerm(t1,t2)==1
u1=t1;
u2=t2;
s=1;
end
if s==1
break;
end
t2=t2+1;
end
t1=t1-1;
end
po=1;
sum2=0;
%第一个边缘点
o1=u1;
o2=u2;
hang=zeros(0,0);
lie=zeros(0,0);
while (po==1)
while (po==1)
sum1=0;
for t3=1:5
for t4=1:5
% 第一个边缘点的左上方5个像素内有边缘点
if edgerm(u1-t3+1,u2+t4-1)==1
% 第一个边缘点周围的边缘点个数
sum1=sum1+1;
sum2=sum2+1;
% 第sum1个边缘点位置x
hang(sum1,1)=u1-t3+1;
% 第sum1个边缘点位置y
hang(sum1,2)=u2+t4-1;
lie(sum2,1)=u1-t3+1;
lie(sum2,2)=u2+t4-1;
end
end
end
% 边缘点只有一个
if sum1==1
po=0;
% 没有边缘点
elseif sum1==0
po=0;
else
% 以最后的边缘点为起点,进行下一轮搜索
u1=hang(sum1,1);
u2=hang(sum1,2);
po=1;
end
end
% 边缘点个数小于30个
if sum2<30
u1=o1;
u2=o2+1;
po=1;
sum2=0;
% 横坐标不变,改变纵坐标值得到边缘点
while (edgerm(u1,u2)~=1)
while (edgerm(u1,u2)~=1)&(u2<310)
% 不是边缘点,纵坐标加1
u2=u2+1;
end
% 没有得到边缘点
if u2==310
u1=u1-1;
u2=1;
end
end
% x不变,改变y重新得到边缘点
o1=u1;
o2=u2;
else
break;
end
end
% 边缘点个数
a1=size(lie);
w1=lie(a1(1),1);
w2=lie(a1(1),2);
po1=1;
while (po1==1)
sum1=0;
for t1=1:3
for t2=1:5
% 边缘点向左方3个像素,上方5个像素
if edgerm(w1-t1+1,w2-t2+1)==1
sum1=sum1+1;
sum2=sum2+1;
lie(sum2,1)=w1-t1+1;
lie(sum2,2)=w2-t2+1;
hang(sum1,1)=w1-t1+1;
hang(sum1,2)=w2-t2+1;
end
end
end
% 边缘点只有一个
if sum1==1
po1=0;
else
po1=1;
w1=hang(sum1,1);
w2=hang(sum1,2);
end
end
po2=1;
while (po2==1)
sum1=0;
for t1=1:7
for t2=1:15
if edgerm(w1+t1-1,w2-t2+1)==1
sum1=sum1+1;
sum2=sum2+1;
lie(sum2,1)=w1+t1-1;
lie(sum2,2)=w2-t2+1;
hang(sum1,1)=w1+t1-1;
hang(sum1,2)=w2-t2+1;
end
end
end
if sum1==1
po2=0;
else
po2=1;
w1=hang(sum1,1);
w2=hang(sum1,2);
end
end
%不止一个边缘点
while (w1~=lie(1,1))&(w2~=lie(1,2))
sum1=0;
for t1=1:5
for t2=1:5
%向右向上5个像素搜索边缘点
if edgerm(w1+t1-1,w2+t2-1)==1
sum1=sum1+1;
sum2=sum2+1;
lie(sum2,1)=w1+t1-1;
lie(sum2,2)=w2+t2-1;
hang(sum1,1)=w1+t1-1;
hang(sum1,2)=w2+t2-1;
end
end
end
w1=hang(sum1,1);
w2=hang(sum1,2);
end
for t1=1:280
for t2=1:320
% 初始化Hough矩阵
e(t1,t2)=0;
end
end
% 边缘点个数
for t1=1:size(lie)
% 将是边缘点的位置设为1
e(lie(t1,1),lie(t1,2))=1;
end
%确定瞳孔的边缘的上下限
minl=320;
maxl=1;
minh=280;
maxh=1;
for t1=1:280
for t2=1:320
if (e(t1,t2)==1)&(t2<minl)
minl=t2;
end
if (e(t1,t2)==1)&(t2>maxl)
maxl=t2;
end
if (e(t1,t2)==1)&(t1<minh)
minh=t1;
end
if (e(t1,t2)==1)&(t1>maxh)
maxh=t1;
end
end
end
% 采用二值化的方法求得瞳孔的面积sum3
sum3=0;
t1=minh;
while t1<=maxh
t2=minl;
while t2<=maxl
if (bw_1(t1,t2)==0)
sum3=sum3+1;
end
t2=t2+1;
end
t1=t1+1;
end
% 得到瞳孔r1半径向上取整,sum3表示瞳孔的面积
r1=ceil(sqrt(sum3/pi));
% 向下取整 估算出瞳孔圆心x坐标
c(1,1)=floor((maxh-minh)/2+minh);
c(1,2)=ceil((maxl-minl)/2+minl);
r2=ceil(r1/3);
r3=2*r2;
for t1=1:ceil(r1/6)*2
for t2=1:ceil(r1/6)*2
pu(t1,t2)=0;
end
end
%pu中存放有相同圆心点的个数,以下找一个最大的pu认为是瞳孔的圆心
t1=minh;
while t1<=maxh
t2=minl;
while t2<=maxl
if (e(t1,t2)==1)
for a=1:2*ceil(r1/6)
for b=1:2*ceil(r1/6)
if (((t1-(c(1,1)+ceil(r1/6)-a))^2+(t2-(c(1,2)-ceil(r1/6)+b))^2-r1^2)>-10)&(((t1-(c(1,1)+ceil(r1/6)-a))^2+(t2-(c(1,2)-ceil(r1/6)+b))^2-r1^2)<10)
% 以a,b为圆心的圆累加个数
pu(a,b)=pu(a,b)+1;
end
end
end
end
t2=t2+1;
end
t1=t1+1;
end
ma=pu(1,1);
% 选取同心圆最多的圆心
for a=1:2*ceil(r1/6)
for b=1:2*ceil(r1/6)
if (ma<pu(a,b))
ma=pu(a,b);
row=a;
col=b;
end
end
end
% 圆心坐标
c(1,1)=c(1,1)+ceil(r1/6)-row;
c(1,2)=c(1,2)-ceil(r1/6)+col;
j=double(i);
for t1=1:280
for t2=1:320
%虹膜内边缘设为白色
if ((t1-c(1,1))^2+(t2-c(1,2))^2-r1^2<80)&((t1-c(1,1))^2+(t2-c(1,2))^2-r1^2>-80)
i(t1,t2)=255;
end
end
end
row1=c(1,1);
col1=c(1,2);
%以上找到圆心(row1,col1),半径r1;
ha=row1;
li=col1;
sh1=1;
zong=0;
while sh1<=3
sh2=1;
while sh2<=3
zong=zong+1;
% 圆心向左、不变、向右移动2
row1=ha-4+sh1*2;
col1=li-4+sh2*2;
j1=double(i);
u=zeros(0,0);
for t1=1:row1
t2=col1;
while t2<=310
%第一像限的图像对角变换
u(row1-t1+1,t2-col1+1)=j1(t1,t2);
t2=t2+1;
end
end
u1=double(u);
%第一像限图像的行列数
yy=size(u);
%瞳孔半径r1
rr=r1+40;
l1=r1+40;
l2=1;
ll1=0;
n1=l1;
sq1=0;
%yy(1,2)表示第一像限的矩阵列数,yy(1,1)行数
while (l2<l1)&(l1<yy(1,2))&(l2<yy(1,1))
pk=(l1-1/2)^2+(l2+1)^2-rr^2;
%半径在rr+40范围内
if pk<0
%沿着l1方向灰度值累加
sq1=sq1+u1(l2+1,l1);
%记录sql的个数
ll1=ll1+1;
l1=l1;
l2=l2+1;
else sq1=sq1+u1(l2+1,l1-1);
ll1=ll1+1;
l1=l1-1;
l2=l2+1;
end
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]陈浩,方勇,朱大洲,王成,陈子龙.基于蚁群算法的玉米植株热红外图像边缘检测[J].农机化研究. 2015,37(06)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/114076788
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)