【语音识别】基于matlab GUI智能语音识别门禁系统【含Matlab源码 596期】

举报
海神之光 发表于 2022/05/29 04:18:17 2022/05/29
【摘要】 一、案例简介 本文基于Matlab设计实现了一个文本相关的声纹识别系统,可以判定说话人身份。 1 系统原理 a 声纹识别 这两年随着人工智能的发展,不少手机App都推出了声纹锁的功能。这里面所采用的主要...

一、案例简介

本文基于Matlab设计实现了一个文本相关的声纹识别系统,可以判定说话人身份。
1 系统原理
a 声纹识别
这两年随着人工智能的发展,不少手机App都推出了声纹锁的功能。这里面所采用的主要就是声纹识别相关的技术。声纹识别又叫说话人识别,它和语音识别存在一点差别。
在这里插入图片描述
b 梅尔频率倒谱系数(MFCC)
梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient, MFCC)是语音信号处理中最常用的语音信号特征之一。
实验观测发现人耳就像一个滤波器组一样,它只关注频谱上某些特定的频率。人耳的声音频率感知范围在频谱上的不遵循线性关系,而是在Mel频域上遵循近似线性关系。
梅尔频率倒谱系数考虑到了人类的听觉特征,先将线性频谱映射到基于听觉感知的Mel非线性频谱中,然后转换到倒谱上。普通频率转换到梅尔频率的关系式为:
在这里插入图片描述
c 矢量量化(VectorQuantization)
本系统利用矢量量化对提取的语音MFCC特征进行压缩。
VectorQuantization (VQ)是一种基于块编码规则的有损数据压缩方法。事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步。它的基本思想是:将若干个标量数据组构成一个矢量,然后在矢量空间给以整体量化,从而压缩了数据而不损失多少信息。
3 系统结构
本文整个系统的结构如下图:
3.1 训练过程
首先对语音信号进行预处理,之后提取MFCC特征参数,利用矢量量化方法进行压缩,得到说话人发音的码本。同一说话人多次说同一内容,重复该训练过程,最终形成一个码本库。
3.2 识别过程
在识别时,同样先对语音信号预处理,提取MFCC特征,比较本次特征和训练库码本之间的欧氏距离。当小于某个阈值,我们认定本次说话的说话人及说话内容与训练码本库中的一致,配对成功。
在这里插入图片描述
4 测试实验
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看到只有说话人及说话内容与码本库完全一致时才会显示“密码正确”,否则显示“密码错误”,实现了声纹锁的相关功能。

二、部分源代码

function varargout = GUI(varargin)

gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @GUI_OpeningFcn, ...
                   'gui_OutputFcn',  @GUI_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before GUI is made visible.
function GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% varargin   command line arguments to GUI (see VARARGIN)

% Choose default command line output for GUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = GUI_OutputFcn(hObject, eventdata, handles) 
% Get default command line output from handles structure
varargout{1} = handles.output;



% --- Executes on button press in trainrec.
function trainrec_Callback(hObject, eventdata, handles)
speaker_id = trainrec();
set(handles.train_current,'string','Hurraay,DONE!');
speaker_iden = sprintf('you re speaker number %d', speaker_id); 
% set(handles.speaker,'string',speaker_iden);
set(handles.access,'BackgroundColor','blue'); 
 set(handles.access,'string','YOU HAVE ACCESS, TRAIN COMMANDS NOW!'); 

% if access_ == 1 
% set(handles.access,'string','YOU HAVE ACCESS, TRAIN COMMANDS NOW!'); 
% else 
% set(handles.access,'string','YOU DONT HAVE ACCESS,SPEAKER NOT RECOGNIZED!'); 
% end
% --- Executes on button press in command.
function command_Callback(hObject, eventdata, handles)
 trai_pairs=30;
 out_neurons=5;
 hid_neurons=6;
 in_nodes=13;
 eata=0.1;emax=0.001;q=1;e=0;lamda=.7;  t=1;
 load backp.mat W V;
 recObj = audiorecorder;
 Fs=8000;
 Nseconds = 1;

while(1)
fprintf('say any word immediately after hitting enter');
input('');
recordblocking(recObj, 1);
x = getaudiodata(recObj);
[kk,g] = lpc(x,12);
Z=(kk);
 Z=double(Z);
 p1=max(Z);
 Z=Z/p1;


for p=1:trai_pairs
    
    z=transpose(Z(p,:));
%  calculate output
   y=(tansig(V*(z)));
   o=(tansig(W*(y)));
   break
end
  
    b=o(1);
    c=o(2);
    d=o(3);
    e=o(4);
    f=o(5);
    a= max(o);
    if (b==a )
        display('AHEAD');
        set(handles.ahead,'BackgroundColor','green'); 
        set(handles.command,'string','Ahead'); 
        pause(2);
    elseif (c== a)
        display('STOP');
        set(handles.stop,'BackgroundColor','green'); 
        set(handles.command,'string','Stop'); 
        pause(2);
    elseif (d== a)
        display('BACK');
        set(handles.back,'BackgroundColor','green'); 
        set(handles.command,'string','Back'); 
        pause(2);
    elseif (e==a)
        display('LEFT');
        set(handles.left,'BackgroundColor','green'); 
        set(handles.command,'string','Left'); 
        pause(2);
    elseif (f==a)
        display('RIGHT');
        set(handles.right,'BackgroundColor','green'); 
        set(handles.command,'string','Right');
        pause(2);
    end
    set(handles.ahead,'BackgroundColor','white'); 
set(handles.left,'BackgroundColor','white'); 
set(handles.right,'BackgroundColor','white'); 
set(handles.stop,'BackgroundColor','white'); 
set(handles.back,'BackgroundColor','white'); 

    
end
function traincommands()
Fs=8000;
Nseconds = 1;
samp=6;
words=5;
recObj = audiorecorder;
aheaddir = 'C:\Users\Rezetane\Desktop\HRI Proj\Speech-Recognition-master\data\train_commands\ahead\';   
backdir = 'C:\Users\Rezetane\Desktop\HRI Proj\Speech-Recognition-master\data\train_commands\back\';   
stopdir = 'C:\Users\Rezetane\Desktop\HRI Proj\Speech-Recognition-master\data\train_commands\stop\';   
rightdir = 'C:\Users\Rezetane\Desktop\HRI Proj\Speech-Recognition-master\data\train_commands\right\';   
leftdir = 'C:\Users\Rezetane\Desktop\HRI Proj\Speech-Recognition-master\data\train_commands\left\';   
s_right = numel(dir([rightdir '*.wav']));    

for i= 1:1:samp
   
filename = sprintf('%ss%d.wav', aheaddir, i); 
fprintf('Reading %ss%d ',aheaddir,i);
[x,Fs] = audioread(filename);
[s(i,:),g] = lpc(x,12); 
end

for i= (samp+1):1:2*samp
    
filename = sprintf('%ss%d.wav', stopdir, i- samp); 
fprintf('Reading %ss%d ',stopdir,i);
[x,Fs] = audioread(filename);
[s(i,:),g] = lpc(x,12);
%plot(s(i,:));
end
 
for i= (2*samp+1):1:3*samp
filename = sprintf('%ss%d.wav', backdir, i-2*samp); 
fprintf('Reading %ss%d ',backdir,i);
[x,Fs] = audioread(filename);
[s(i,:),g] = lpc(x,12);
end

for i= (3*samp+1):1:4*samp
filename = sprintf('%ss%d.wav', leftdir, i-3*samp); 
fprintf('Reading %ss%d ',leftdir,i);
[x,Fs] = audioread(filename);
[s(i,:),g] = lpc(x,12);
end

for i= (4*samp+1):1:5*samp
    
filename = sprintf('%ss%d.wav', rightdir, i- 4*samp); 
fprintf('Reading %ss%d ',rightdir,i);
[x,Fs] = audioread(filename);
[s(i,:),g] = lpc(x,12);
end

S=zeros(1,13);
for i=1:1:samp
    S=cat(1,S,s(i,:));
    S=cat(1,S,s(samp+i,:));
    S=cat(1,S,s(2*samp+i,:));
    S=cat(1,S,s(3*samp+i,:));
    S=cat(1,S,s(4*samp+i,:));
end
S(1,:)=[];
save speechp.mat S
trai_pairs=30; % 48 samples
out_neurons=5; % no of words
hid_neurons=6; %matka
in_nodes=13; %features are 13
eata=0.1;emax=0.001;q=1;e=0;lamda=.7;  t=1;


load speechp.mat S

p1=max(max(S));
s=S/p1;

Z= double(s);

dummy=[1 -1 -1 -1 -1;
   -1 1 -1 -1 -1;
   -1 -1 1 -1 -1;
   -1 -1 -1 1 -1;
   -1 -1 -1 -1 1];
   
t=trai_pairs/out_neurons;
D=dummy;
for i= 1:1:5
    D=cat(1,D,dummy);
end

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/115054253

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。