【脑电信号】基于matlab小波变换脑电信号特征提取【含Matlab源码 511期】

举报
海神之光 发表于 2022/05/29 04:05:32 2022/05/29
【摘要】 一、小波变换简介 小波变换是从20世纪80年代起逐渐发展成熟的一项数学应用技术,具有对时间—频率的双重分析和多分辨率分析能力,目前已经广泛应用于图像处理、模式识别等多个领域。小波变换的窗口大小固定但形状...

一、小波变换简介

小波变换是从20世纪80年代起逐渐发展成熟的一项数学应用技术,具有对时间—频率的双重分析和多分辨率分析能力,目前已经广泛应用于图像处理、模式识别等多个领域。小波变换的窗口大小固定但形状可改变,因此能够满足时域—频域局部化分析要求[22]。离散小波变换比连续小波变换的去噪效果更好,更适用于实际应用。

小波变换首先通过分解信号,使信号的能量集中在一些大的小波系数中,而噪声的能量分布于整个小波域内;然后通过阈值降噪,选择合适的阈值将有用信号的系数保留,将噪声信号的系数置零,从而去除噪声;最后再对经过阈值降噪后的系数进行重构,得到去除噪声后的信号。

常用的小波基函数有Meyer小波、Coiflet(coif N)小波、Daubechies(db N)小波等[9]。为得到较好的去噪效果,所选取的小波基函数在对心电信号进行分解时,应尽量保留心电信号中的有用分量,同时使噪声分解对应的小波系数差异尽可能大。Coiflet4小波基与心电信号的波形最为相似,同时与输出信号具有良好的相关性,重构后的信号信噪比大、均方误差小,因此本文选用Coiflet4小波基进行小波分解。

二、部分源代码

% Extract Discrete Wavelet Transform (DWT) Feature
close all; clear; clc;

load dataset_BCIcomp1.mat
Y=y_train;

% Range is 0 to 9 sec
startS=0;
endS=9;
wStep=1;
wRange=9;

X=extractDWT(x_train,startS,endS,wStep,wRange);
T=extractDWT(x_test,startS,endS,wStep,wRange);
save dataDWT.mat X Y T


color_L = [0 102 255] ./ 255;
color_R = [255, 0, 102] ./ 255;

pos = find(Y==1);
plot(X(pos,1),X(pos,2),'x','Color',color_L,'LineWidth',2);

hold on
pos = find(Y==2);
plot(X(pos,1),X(pos,2),'o','Color',color_R,'LineWidth',2);
function X=extractDWT(x_train,startS,endS,wStep,wRange)
%  x_train  = input signal
%  startS   = from second
%  endS     = end second
%  wStep   = overlapping
%  wRange = window size
FS=128;

N=size(x_train,3);
sz=floor((endS-(startS+wRange))/wStep)+1;
X=zeros(sz*140,2);
cn=0;
for i=1:N
    
    for sig=startS:wStep:endS-wRange
        
        sW=sig*FS+1;
        eW=(sig+wRange)*FS;
        
        C3Sig=x_train(sW:eW,1,i);
        C4Sig=x_train(sW:eW,3,i);
        
        waveletFunction = 'db4';
        waveletLevel=3;
        [wCoe,L] = wavedec(C3Sig,waveletLevel,waveletFunction);
        C3D3 = detcoef(wCoe,L,3);   % Mu
        
        
        [wCoe,L] = wavedec(C4Sig,waveletLevel,waveletFunction);
        C4D3 = detcoef(wCoe,L,3);  % Mu
        

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 沈再阳.精通MATLAB信号处理[M].清华大学出版社,2015.
[2]高宝建,彭进业,王琳,潘建寿.信号与系统——使用MATLAB分析与实现[M].清华大学出版社,2020.
[3]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.
[4]宋玉龙,赵冕,郑威.基于小波变换和样本熵的脑电信号癫痫特征提取[J].计算机与数字工程. 2020,48(06)

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/114743331

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。